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Abstract

We consider analytic curves∇ t of symplectic connections of Ricci-type on the torusT 2n with
∇0 the standard connection. We show, by a recursion argument, that if∇ t is a formal curve of such
connections then there exists a formal curve of symplectomorphismsψt such thatψt ·∇ t is a formal
curve of flatT 2n-invariant symplectic connections and so∇ t is flat for all t. Applying this result to
the Taylor series of the analytic curve, it means that analytic curves of symplectic connections of
Ricci-type starting at∇0 are also flat.

The groupG of symplectomorphisms of the torus(T 2n, ω) acts on the spaceE of symplectic
connections which are of Ricci-type. As a preliminary to study the moduli spaceE/G we study the
moduli of formal curves of connections under the action of formal curves of symplectomorphisms.
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1. Introduction

On any symplectic manifold(M,ω) the spaceS of symplectic connections is an infinite
dimensional affine space whose corresponding vector space is the space of completely
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symmetric 3-tensors onM. To encode some geometry into a symplectic connection it thus
seems reasonable to introduce a selection rule for symplectic connections. A variational
principle associated to a Lagrangian density, which is an invariant quadratic polynomial
in the curvature, has been considered in[1]; the symplectic connections satisfying the
Euler–Lagrange equations are said to bepreferred. The symplectomorphism groupG of
(M,ω)acts naturally onSand stabilises the subspacePof preferred symplectic connections.
The first question we wanted to address is to give a description of the moduli spaceP/G of
preferred connections modulo the action of symplectomorphisms. Such a description was
given in[1] when(M,ω) is a closed surface; but, up to now, very little has been done in the
higher-dimensional situation.

We have observed that a linear condition on the curvature (the vanishing of one of its
irreducible components—the non-Ricci component,W) implies the Euler–Lagrange equa-
tions. Furthermore, this condition seems to imply that many of the properties of the surface
situation extend to the higher-dimensional case. We have called symplectic connections
satisfying this curvature conditionconnections of Ricci-type(all symplectic connections in
dimension 2 are of Ricci-type). This condition is preserved by symplectomorphisms and
so we modify our initial question to the following one: give a description of the spaceE of
Ricci-type connections and its moduli spaceE/G.

This paper is devoted to this modified question in the case whereM is a torusT 2n andω
aT 2n-invariant symplectic structure. Although we do not answer this question, we are able,
in a formal setting made precise below, to show that the moduli space is infinite dimensional
and to give a partial description of it.

If ∇ t is a formal curve of symplectic connections, we shall denote byWt theW part of
the curvature of∇ t . We prove the following:

Theorem. Let ∇ t be a formal curve of symplectic connections on(T 2n, ω) such that∇0

is the standard flat connection onT 2n, and such thatWt = 0. Then the formal curvature
Rt of ∇ t vanishes and there exists a formal curve of symplectomorphismsψt such that
∇̃ t := ψt · ∇ t is a formal curve of flatT 2n-invariant symplectic connections.

This implies the following:

Theorem. Let∇ t be an analytic curve of analytic symplectic connections on(T 2n, ω) such
that ∇0 is the standard flat connection onT 2n, and such thatWt = 0. Then the curvature
Rt of ∇ t vanishes.

For the moduli space in the formal setting, we show:

Proposition. For two curves∇̃ t and ∇̃′t of invariant flat connections of Ricci-type on

(R2n,Ω) with ∇̃0 = ∇̃′0 the trivial connection, there always exists a formal curve of
symplectomorphisms̃ψt so thatψ̃t · ∇̃ t = ∇̃′t .

Theorem. The moduli space of formal curves of Ricci-type symplectic connections start-
ing with the standard flat connection on(T 2n, ω) under the action of formal curves of
symplectomorphisms is described by the space of formal curves of linear mapsAt : R

2n →



176 M. Cahen et al. / Journal of Geometry and Physics 46 (2003) 174–192

sp(2n,R)[[ t]] satisfyingAt(X)At(Y) = 0 andAt(X)Y = At(Y)X, modulo the action of
Sp(2n,Z).

The plan of the paper is as follows. InSection 2we recall some general properties of
symplectic connections having Ricci-type curvature. InSection 3we introduce the notion
of formal curves of connections and we show that the properties ofSection 2are still true
for a formal curve of symplectic connections with Ricci-type curvature. InSection 4, we
analyse theWt = 0 condition at order 1 and 2 for∇ t = ∇0+∑∞

k=1 tkA(k) a formal curve of
Ricci-type symplectic connections onT 2n with∇0 the standard flat connection; in particular,
we show that there exists a functionU(1) and a completely symmetric,T 2n-invariant 3-tensor
Q(1) onT 2n such thatA(1) = (∇0)3U(1) + Q(1) and we show that∇′t = ∇0 + tQ̄(1) (with
ω(Q̄(1)(X)Y,Z) = Q(1)(X, Y, Z)) defines a curve of invariant flat symplectic connections
on(T 2n, ω). This remark can be formulated in a slightly different way: given∇ t = ∇0+A(t)

a smooth curve of Ricci-type symplectic connections then, up to a symplectomorphism,
the tangent vector to this family of connections lies in the finite dimensional space of
flat T 2n-invariant symplectic connections.Section 5is devoted to a proof of a recurrence
lemma which implies the first theorem. InSection 6we study the question of when two
formal curves of flat invariant connections onT 2n are equivalent by a formal curve of
symplectomorphisms.

Thanks. We would like to thank Boguslaw Hajduk and Aleksy Tralle who pointed out a
mistake in an earlier version of this paper.

2. Ricci-type curvature

A symplectic connection∇ on a symplectic manifold(M,ω) is a linear connection having
no torsion and for whichω is parallel (∇ω = 0). The curvature endomorphismR of ∇ is

R(X, Y)Z = (∇X∇Y − ∇Y∇X − ∇[X,Y ])Z

for vector fieldsX, Y,Z onM. The symplectic curvature tensor

R(X, Y;Z, T) = ω(R(X, Y)Z, T)

is antisymmetric in its first two arguments, symmetric in its last two and satisfies the first
Bianchi identity

R(X, Y;Z, T) = 0,

where denotes the sum over the cyclic permutations of the listed set of elements. The
second Bianchi identity takes the form

(∇XR)(Y, Z) = 0.
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The Ricci tensorr is the symmetric 2-tensor

r(X, Y) = Trace [Z → R(X,Z)Y ].

If dim M = 2n ≥ 4, the curvatureR of such a connection has two irreducible components
under the action of the symplectic groupSp(2n,R). We denote them byE andW :

R = E + W.

TheE component encodes the information contained in the Ricci tensor of∇ and is called
the Ricci part of the curvature tensor. It is given by

E(X, Y;Z, T) = −1

2(n + 1)
[2ω(X, Y)r(Z, T) + ω(X,Z)r(Y, T) + ω(X, T)r(Y, Z)

−ω(Y,Z)r(X, T) − ω(Y, T)r(X,Z)].

The curvature is said to be Ricci-type if theW component vanishes, i.e. whenR = E.

Lemma 1. Let (M,ω) be a symplectic manifold of dimension2n ≥ 4. If the curvature of a
symplectic connection∇ onM is of Ricci-type then there is a1-form u such that

(∇Xr)(Y, Z) = 1

2n + 1
(ω(X, Y)u(Z) + ω(X,Z)u(Y)).

Conversely, if there is such a1-formu, the“Weyl” part of the curvature,W = R−E satisfies

(∇XW)(Y,Z; T,U) = 0.

Proof. The property follows from the second Bianchi’s identity, see[2]. �

Corollary 2. A symplectic manifold with a symplectic connection whose curvature is of
Ricci-type is locally symmetric if and only if the1-formu, defined in the lemma, vanishes.

Denote byρ the linear endomorphism such that

r(X, Y) = ω(X, ρY).

The symmetry ofr is equivalent to saying thatρ is in the Lie algebra of the symplectic
groupSp(TM, ω). For an integerp > 1, define

(p)
r (X, Y) = ω(X, ρpY).

It is symmetric whenp is odd and antisymmetric whenp is even.

Lemma 3. Let (M,ω) be a symplectic manifold with a symplectic connection∇ with
Ricci-type curvature. Then, the following identities hold:

(1) There is a functionb such that

∇u = − 1 + 2n

2(1 + n)

(2)
r + bω,
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(2) The differential of the functionb is given by

db = 1

1 + n
i(ū)r,

whereū is the vector field such thati(ū)ω = u;
(3) WhenM is connected

b + 2n + 1

4(1 + n)
Traceρ2

is constant.

Proof. These identities follow fromLemma 1, see[2]. �

Let the torusT 2n be endowed with aT 2n-invariant symplectic structureω. Let ∇ be
a symplectic connection on(T 2n, ω) which is of Ricci-type. The groupG of symplecto-
morphisms of(T 2n, ω) acts on the setE of symplectic connections withW = 0. We are
interested in the set of orbits of G inE, i.e. inE/G.

We now consider the symplectic vector space(R2n,Ω) and viewΩ as a translation in-
variant symplectic structure. A symplectic connection onR

2n will be determined by its
values on translation invariant vector fields. If, in addition, the connection∇ is transla-
tion invariant thenB(X)Y := ∇XY (for invariant vector fieldsX, Y ) defines a linear map
B : R

2n → sp(2n,R) which completely determines∇. The only condition onB is that
Ω(B(X)Y,Z) is completely symmetric.

Proposition 4. Let∇ be a translation invariant symplectic connection on(R2n,Ω) and let
B(X)Y = ∇XY as above. If∇ is of Ricci-type and2n ≥ 4, then∇ is flat andB(X)B(Y) = 0.

Proof. SinceB is constant, the curvature endomorphism is given by

R(X, Y) = [B(X), B(Y)]

and so the Ricci tensor is given by

r(X, Y) = Trace(B(X)B(Y)).

It is easy to see that symplectic curvature tensorsR(X, Y;Z, T)are, in fact, determined by the
terms of the formR(X, Y;X, Y) so that the equationW = 0 is equivalent toR(X, Y;X, Y) =
−(2/(n + 1))Ω(X, Y)r(X, Y) and in the present case this has the form

(n + 1)Ω(B(X)X,B(Y)Y) = −2Ω(X, Y)r(X, Y).

Polarising the equation inX we have

(n + 1)Ω(T, B(X)B(Y)Y) = Ω(X, Y)r(T, Y) + Ω(T, Y)r(X, Y)

= Ω(X, Y)Ω(T, ρY) + Ω(T, Y)Ω(X, ρY),

so thatW = 0 is equivalent to

(n + 1)B(X)B(Y)Y = Ω(X, Y)ρY + Ω(X, ρY)Y.
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Polarising this inY we have

2(n+1)B(X)B(Y)Z=Ω(X, Y)ρZ+Ω(X, ρY)Z+Ω(X,Z)ρY+Ω(X, ρZ)Y. (1)

Now choose dual basesXi,Xi for R
2n with Ω(Xi,Xj) = δij then an easy calculation shows

ρ =
∑
i

B(Xi)B(Xi).

If we multiply (1) by B(Xi), setX = Xi and sum we get

(n + 1)ρB(Y)Z = −B(Y)ρZ − B(Z)ρY.

Alternatively, we may substituteB(Xi)Z for Z in (1), setY = Xi and sum to give

(n + 1)B(X)ρZ = −ρB(Z)X + B(Z)ρX.

Adding the two equations after settingX = Y we see that

ρB(X) = −B(X)ρ

and hence that

(n − 1)ρB(X) = 0.

Thus, if 2n ≥ 4

ρB(X) = B(X)ρ = 0 ⇒ ρ2 = 0.

SubstitutingρZ for Z in (1) we have

0 = r(X, Y)ρZ + r(X,Z)ρY

and settingZ = Y , applyingΩ(X, .) we get finally

0 = r(X, Y)2.

Thus the Ricci tensor vanishes, and hence∇ is flat.
Puttingρ = 0 in (1) yieldsB(X)B(Y) = 0. �

3. Formal curves

Definition 5. A formal curve of symplectic connectionson a symplectic manifold(M,ω)

is a formal power series

∇ t = ∇ +
∞∑
k=1

tkA(k),

where∇ is a symplectic connection onM, and theA(k) are(2,1) tensors such that

A(k)(X, Y, Z) := ω(A(k)(X)Y,Z) (2)

is totally symmetric.
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Definition 6. A formal curve of symplectomorphismsis a homomorphism of Poisson
algebras

ψt : C∞(M) → C∞(M)[[ t]] , ψt = ψ(0) +
∞∑
k=1

tkψ(k)

such thatψ(0) : C∞(M) → C∞(M) is an isomorphism.

The leading termψ(0) of a formal curve of symplectomorphisms is given by composition
with a symplectomorphismψ(0)(f) = f ◦ σ = σ∗(f) so that we may take such a term out
as a common factor and writeψt = σ∗ ◦ φt andφt = id + ∑

k≥1 tkφ(k).
If φt = id + ∑

k≥1 tkφ(k) is a formal curve of symplectomorphisms beginning with the
identity then the first-order termX(1) = φ(1) is a symplectic vector field. Moreover, for
any symplectic vector field, exptX = id + ∑

k≥1 tk/k!Xk is a formal curve of symplec-
tomorphisms. A straightforward recursion argument then shows that any formal curve of
symplectomorphisms beginning with the identity can be written in the formφt = expXt ,
whereXt = ∑

k≥1 tkX(k) is a formal curve of vector fields.

Definition 7. A formal 1-parameter group of symplectomorphismsis a formal curve of
symplectomorphismsψt such thatψat ◦ ψbt = ψ(a+b)t for all a, b ∈ R.

In order for this definition to make sense we first have to extendψt by linearity overR[[ t]]
to a morphism ofR[[ t]] algebras. The definition then implies thatψ(0) is the identity and that
ψ(1)(f) = X(f) for some symplectic vector field which we callthe infinitesimal generator
of ψt . It is easy to see that every formal 1-parameter group of symplectomorphisms has the
form ψt = exptX. Moreover, a recursion shows that, ifXt is a formal curve of symplectic
vector fields, we can find a second sequence of symplectic vector fieldsY(k) such that

expXt = exptY(1) ◦ expt2Y(2) ◦ · · · ◦ exptkY(k) ◦ · · ·
and so any formal curve of symplectomorphismsψt can be factorised in two ways

ψt = σ∗ ◦ expXt = σ∗ ◦ φ
(1)
t ◦ φ

(2)
t2

◦ · · · ◦ φ
(k)

tk
◦ · · · ,

where theφ(k)
t are formal 1-parameter groups of symplectomorphisms.

Remark that a formal curve of symplectomorphismsψt acts on a formal curve of vector
fieldsXt viewed as aR[[ t]]-linear derivation ofC∞(M)[[ t]] by

(ψt · Xt)f = ψt(Xt(ψ
−1
t f)),

and acts on a formal curve of symplectic connections∇ t by

(ψt · ∇ t)XY = ψt · (∇ t

ψ−1
t ·Xψ−1

t · Y). (3)

Let ∇ t be a formal curve of symplectic connections on a symplectic manifold(M,ω) of
dimension 2n,

∇ t = ∇ +
∞∑
k=1

tkA(k).
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We denote as in(2) by A(k) the corresponding symmetric 3-tensors. The formal curvature
endomorphismRt of ∇ t is Rt(X, Y) = ∇ t

X ◦ ∇ t
Y − ∇ t

Y ◦ ∇ t
X − ∇ t

[X,Y ] so that

Rt = R∇ +
∞∑
k=1

tkR(k)

with

R(k)(X, Y) = (∇XA(k))(Y) − (∇YA
(k))(X) +

∑
p+q=k
p,q≥1

[A(p)(X),A(q)(Y)]. (4)

The symplectic curvature tensorRt(X, Y;Z, T) = ω(Rt(X, Y)Z, T) is antisymmetric
in its first two arguments, symmetric in its last two, satisfies the first Bianchi identity

Rt(X, Y;Z, T) = 0 and the second Bianchi identity (∇ t
XRt)(Y, Z) = 0.

The formal Ricci tensor isrt(X, Y) = Trace[Z → Rt(X,Z)Y ], so that

rt = r∇ +
∞∑
k=1

tkr(k),

where ther(k) are the symmetric tensors

r(k)(X, Y) = Trace[Z → (∇ZA
(k))(X)Y ] +

∑
p+q=k
p,q≥1

TraceA(p)(X)A(q)(Y). (5)

The Ricci partEt of the formal curvature tensor is given by

Et(X, Y;Z, T) = −1

2(n + 1)
[2ω(X, Y)rt(Z, T) + ω(X,Z)rt(Y, T) + ω(X, T)rt(Y, Z)

−ω(Y,Z)rt(X, T) − ω(Y, T)rt(X,Z)]. (6)

The formal curvature is said to be of Ricci-type whenRt = Et .

Lemma 8. Let(M,ω)be a symplectic manifold of dimension2n ≥ 4.If the formal curvature
of a formal curve of symplectic connections∇ t on M is of Ricci-type then there exists a
formal curve of1-forms

ut =
∞∑
k=0

tku(k)

such that

(∇ t
Xrt)(Y, Z) = 1

2n + 1
(ω(X, Y)ut(Z) + ω(X,Z)ut(Y)) (7)

and there exists a formal curve of functions

bt =
∞∑
k=0

tkb(k)
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such that

∇ tut = − 1 + 2n

2(1 + n)

(2)

rt + btω. (8)

with ω(X, (ρt)Y) = rt(X, Y) = andrt
(2)

(X, Y) = ω(X, (ρt)2Y). Also

dbt = 1

1 + n
i(ūt)rt . (9)

Lemma 9. Let ∇ t be a formal curve of translation invariant symplectic connections on
(R2n,Ω) and letBt(X)Y := ∇ t

XY (for invariant vector fieldsX, Y ). If ∇ t is of Ricci-type
and2n ≥ 4, then∇ t is flat andBt(X)Bt(Y) = 0.

Proof. We can copy in the formal series setting the proof ofLemma 9. Write Bt =∑∞
k=0 tkB(k) where theB(k) are constant maps fromR2n to sp(R2n,Ω). The formal curva-

ture endomorphism is given by

Rt(X, Y) = [Bt(X), Bt(Y)],

i.e.

R(k)(X, Y) =
∑

p+q=k

p,q≥0

[Bp(X), Bq(Y)]

and the formal Ricci tensor is given by

rt(X, Y) = Trace(Bt(X)Bt(Y)),

i.e.

r(k)(X, Y) =
∑

p+q=k

p,q≥0

TraceBp(X)Bq(Y).

The equationWt = 0 is again equivalent to

2(n+1)Bt(X)Bt(Y)Z=Ω(X, Y)ρtZ+Ω(X, ρtY)Z+Ω(X,Z)ρtY+Ω(X, ρtZ)Y,

i.e.
∑

p+q=k

p,q≥0

2(n + 1)B(p)(X)B(q)(Y)Z

= Ω(X, Y)ρ(k)Z + Ω(X, ρ(k)Y)Z + Ω(X,Z)ρ(k)Y + Ω(X, ρ(k)Z)Y. (10)

Choosing dual basesXi, Xi for R
2n with Ω(Xi,Xj) = δij then

ρt =
∑
i

Bt(Xi)Bt(Xi),
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i.e.

ρ(k) =
∑

p+q=k

∑
i

B(p)(Xi)B(q)(Xi).

If we multiply (10) by B(k′)(Xi), setX = Xi and sum overi and overk, k′ ≥ 0 so that
k + k′ = K we get

(n + 1)
∑

q′+q=K

q,q′≥0

ρ(q′)B(q)(Y)Z =
∑

k′+k=K
k′,k′≥0

(−B(k′)(Y)ρ(k)Z − B(k′)(Z)ρ(k)Y).

This can be written in terms of formal series

(n + 1)ρtBt(Y)Z = −Bt(Y)ρtZ − Bt(Z)ρtY.

Alternatively, we may substituteB(s)(Xi)Z for Z in (10), setY = Xi and sum to give

(n + 1)Bt(X)ρtZ = −ρtBt(Z)X + Bt(Z)ρtX.

Adding the two equations after settingX = Y , we see thatρtBt(X) = −Bt(X)ρt , so
(n−1)ρtBt(X) = 0 and, if 2n ≥ 4, ρtBt(X) = Bt(X)ρt = 0 thus(ρt)2 = 0. This
in turn implies rt = 0, henceRt = 0 and∇ is flat. Puttingρt = 0 in (10) yields
Bt(X)Bt(Y) = 0. �

4. Curves of Ricci-type connections on the torus

Consider the torusT 2n endowed with aT 2n-invariant symplectic structureω. Let ∇0 be
the standard flat,T 2n-invariant symplectic connection on(T 2n, ω). Let

∇ t = ∇0 +
∞∑
k=1

tkA(k)

be a formal curve of symplectic connections such thatW(t) = 0. We denote as before(2)
by A(k) the corresponding symmetric 3-tensors (A(k)(X, Y, Z) = ω(A(k)(X)Y,Z)).

We consider, as given byLemma 8, the corresponding formal curve of 1-formsut =∑∞
k=0 tku(k) and the formal curve of functionsbt = ∑∞

k=0 tkb(k); clearly u(0) = 0 and

b(0) = 0 sincer∇0 = 0.

Lemma 10. If ∇ t = ∇0 + ∑∞
k=1 tkA(k) is a formal curve of symplectic connections such

that W(t) = 0, then the formal curvature vanishes at order1 in t (i.e. one hasb(1) = 0,
u(1) = 0, r(1) = 0, R(1) = 0). Furthermore, there exists a functionU(1) and a completely
symmetric, T 2n-invariant3-tensorQ(1) onT 2n such that

A(1) = (∇0)3U(1) + Q(1).

Proof. Denote byxa (1 ≤ a ≤ 2n) the standard angle variables onT 2n and by∂a the
correspondingT 2n-invariant vector fields onT 2n (the standard flat connection is defined by
∇0

∂a
∂b = 0).
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At order 1, sinceb(0) = 0, u(0) = 0, r0 = 0, we have

(1) db(1) = 0 by (9), sob(1) is a constant;
(2) du(1) = b(1)ω by (8); but ω is not exact by compactness ofT 2n so b(1) = 0 and

∇0u(1) = 0 thusu(1)(X) is a constant for anyT 2n-invariant vector fieldX onT 2n;
(3) Eq. (7) at order 1 yields(∇0r1) as a combination of products ofω andu1 so that

∂a(r
(1)(∂b, ∂c)) is a constant; the periodicity of the anglesxa implies then that∂a(r(1)

(∂b, ∂c)) = 0 sou(1) = 0 andr(1)(∂b, ∂c) = a
(1)
ab is a constant.

The definition of the (formal) Ricci tensor(5) yieldsa(1)ab = −∂qA
(1)q

ab at order 1, hence,

for each value of the indicesa, b, the 2n-form a
(1)
abω

n is exact; this implies

a
(1)
ab = 0 so r(1) = 0 and thusR(1) = 0.

The definition of the (formal) curvature tensor(4)at order 1 givesR(1)
abcd = ∂aA

(1)
bcd−∂bA

(1)
acd.

Hence, for each value of the indicesc, d the 1-formA
(1)
·cd is closed, so there exist functions

kcd onT 2n and constantsQ(1)
bcd such that

A
(1)
bcd = ∂bk

(1)
cd + Q

(1)
bcd.

Since∇ t is symplectic,A(1)
bcd is totally symmetric; the fact thatA(1)

bcd − A
(1)
cbd = 0 implies

∂bk
(1)
cd − ∂ck

(1)
bd = −Q

(1)
bcd + Q

(1)
cbd.

Whend is fixed, the left-hand side is an exact 2-form. The right-hand side isT 2n-invariant.
Since there are no non-zero exactT 2n-invariant forms, this implies

Q
(1)
bcd = Q

(1)
cbd, ∂bk

(1)
cd − ∂ck

(1)
bd = 0.

Similarly,A(1)
bcd − A

(1)
bdc = 0 gives

∂bk
(1)
cd − ∂bk

(1)
dc = −Q

(1)
bcd + Q

(1)
bdc.

In this case, whenc andd are fixed, the left-hand side is an exact 1-form, while the right-hand
side isT 2n-invariant. For the same reason as above, we deduce that both members vanish:

Q
(1)
bcd = Q

(1)
bdc, k

(1)
cd − k

(1)
dc = constant.

HenceQ(1)
bcd is completely symmetric. Furthermore, for each fixed indexd, the 1-formk

(1)
·d

is closed. Hence there exist functionsS
(1)
d and constantsTcd such that

k
(1)
cd = ∂cS

(1)
d + T

(1)
cd .

The fact thatk(1)cd − k
(1)
dc is a constant implies for the 1-formS(1)· that dS(1) is T 2n-invariant,

thusS(1) is closed. Hence there exists a functionU(1) and constantsV(1)
d such that

S
(1)
d = ∂dU

(1) + V
(1)
d .

Substituting, we have

A
(1)
bcd = ∂3

bcdU
(1) + Q

(1)
bcd. �
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Lemma 11. If ∇ t = ∇0 + ∑∞
k=1 tkA(k) is a formal curve of symplectic connections such

thatW(t) = 0, then the curvature vanishes at order2 in t (i.e.b(2) = 0,u(2) = 0, r(2) = 0,
R(2) = 0).

WritingA(1) = (∇0)3U(1) +Q(1) as inLemma 10, the formula∇′t = ∇0 + tQ̄(1), where
ω(Q̄(1)(X)Y,Z) = Q(1)(X, Y, Z), defines a curve of invariant flat symplectic connections
on (T 2n, ω).

Furthermore, there exist a functionU(2) and a T 2n-invariant, completely symmetric
tensorQ(2) such that

A
(2)
bcd = U(1)p

b(Q
(1)
pcd + 1

2U
(1)
pcd) + 1

2U
(1)pU

(1)
pbcd+ ∂3

bcdU
(2) + Q

(2)
bcd,

where

U(1)
p1,...,pk

= ∂kp1,...,pk
U(1), U(1)p

q1,...,qk = ∂k+1
q1,...,qk

U(1)ωqp, ωpqωql = δ
p

l .

Proof. At order 2, sinceb(0) = b(1) = 0, u(0) = u(1) = 0, r(0) = r(1) = 0

(1) db(2) = 0 by (9), sob(2) is a constant;
(2) du(2) = b(2)ω by (8); sob(2) = 0 and∇0u(2) = 0;
(3) Eq. (7)at order 2 yields that∂a(r(2)(∂b, ∂c)) is a constant; again this impliesu(2) = 0

andr(2)(∂b, ∂c) = a
(2)
ab is a constant.

The definition of the (formal) Ricci tensor yieldsa(2)ab = −∂qA
(2)q

ab +A
(1)p

qbA
(1)q

ap ; using

Lemma 10with Q(1)p
qb = Q

(1)
qbkω

kp:

A
(1)p

qbA
(1)q

ap = Q(1)p
qbQ

(1)q
ap + ∂q(Q

(1)q
apU

(1)p
b) + ∂p(U

(1)q
aQ

(1)p
qb)

+ ∂q(U
(1)p

bU
(1)q

ap).

Hence

a
(2)
ab = Q(1)p

qbQ
(1)q

ap − ∂q(A
(2)q

ab − U(1)p
bQ

(1)q
ap

−U(1)p
aQ

(1)q
pb − U(1)p

bU
(1)q

ap).

Since there are no exact, non-zero,T 2n-invariant 2n-forms onT 2n, we have

a
(2)
ab = Q(1)p

qbQ
(1)q

ap,

∂q(A
(2)q

ab − U(1)p
bQ

(1)q
ap − U(1)p

aQ
(1)q

pb − U(1)p
bU

(1)q
ap) = 0.

The definition of the (formal) curvature tensor at order 2 givesR
(2)
abcd = ∂aA

(2)
bcd− ∂bA

(2)
acd+

A
(1)p

bc A
(1)
apd − A

(1)p
acA

(1)
bpd. UsingLemma 10we get

R
(2)
abcd = ∂a(A

(2)
bcd + U(1)

pdQ
(1)p

bc − U(1)p
cQ

(1)
bpd − U(1)p

cU
(1)

bpd)

− ∂b(A
(2)
acd + U(1)

pdQ
(1)p

ac − U(1)p
cQ

(1)
apd − U(1)p

cU
(1)

apd)

+Q(1)p
bcQ

(1)
apd − Q(1)p

acQ
(1)

bpd.
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TheW(2) = 0 condition says that

R
(2)
abcd = − 1

2(n + 1)
[2ωaba

(2)
cd + ωaca

(2)
bd + ωada

(2)
bc − ωbca

(2)
ad − ωbda

(2)
ac ].

The fact that there does not exist a non-zeroT 2n-invariant exact 2-form implies on the one
hand

∂a(A
(2)
bcd + U(1)

pdQ
(1)p

bc − U(1)p
cQ

(1)
bpd − U(1)p

cU
(1)

bpd)

−∂b(A
(2)
acd + U(1)

pdQ
(1)p

ac − U(1)p
cQ

(1)
apd − U(1)p

cU
(1)

apd) = 0,

and on the other hand

Q(1)p
bcQ

(1)
apd − Q(1)p

acQ
(1)

bpd

= − 1

2(n + 1)
[2ωaba

(2)
cd + ωaca

(2)
bd + ωada

(2)
bc − ωbca

(2)
ad − ωbda

(2)
ac ],

wherea(2)ab = Q(1)p
qbQ

(1)q
ap.

This last relation tells us that theT 2n-invariant connection defined by∇0 + tQ(1) (which
is symplectic because of the complete symmetry) has aW tensor which is zero. Lifting
everything toR

2n and applyingProposition 4we get that the corresponding curvature
vanishes identically. Hence

a
(2)
ab = 0, Q(1)p

bcQ
(1)

apd − Q(1)p
acQ

(1)
bpd = 0.

This in turn implies

r(2) = 0, R(2) = 0.

The first relation tells us that there exist functionsk
′(2)
cd and constantsQ(2)

bcd such that

A
(2)
bcd − U(1)p

cQ
(1)

bpd − U(1)p
dQ

(1)
bpc − U(1)p

cU
(1)

bpd = ∂bk
′(2)
cd + Q(2)

bcd.

This can be rewritten as

A
(2)
bcd− U(1)p

b(Q
(1)

pcd+ 1
2U

(1)
pcd)− 1

2U
(1)pU(1)

pbcd− = ∂bk
(2)
cd + Q(2)

bcd (11)

with

k
(2)
cd = k

′(2)
cd − U(1)pQ(1)

pcd + 1
2U

(1)p
cU

(1)
pd − 1

2U
(1)pU(1)

pcd.

Indeed we have

U(1)p
cU

(1)
bpd = 1

2U
(1)p

cU
(1)

bpd + 1
2∂b(U

(1)p
cU

(1)
pd) + 1

2U
(1)p

dU
(1)

bpc

and also

1
2U

(1)p
bU

(1)
cpd = 1

2∂b(U
(1)pU(1)

cpd) − 1
2U

(1)p∂bU
(1)

cpd.
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Now the left-hand side of theEq. (11)is totally symmetric in its indices (bcd) so the same
reasoning as inLemma 10shows thatQ(2) is totally symmetric and there exists a function
U(2) so that∂bk

(2)
cd = ∂3

bcdU
(2). Substituting, we find

A
(2)
bcd = U

(1)p
b(Q

(1)
pcd + 1

2U
(1)

pcd) + 1
2U

(1)pU
(1)

pbcd+ ∂3
bcdU

(2) + Q
(2)
bcd

which ends the proof of the lemma. �

5. A recurrence lemma

Lemma 12. Let ∇ t be a formal curve of symplectic connections on(T 2n, ω) such that
∇(0) = ∇0, andWt = 0. Assume that, for all orders l < k, A(l), and thusr(l), u(l), b(l) are
T 2n-invariant. Then, at order k, r(k), u(k), b(k) areT 2n-invariant, and there exist a function
U(k) onT 2n and aT 2n-invariant completely symmetric3-tensorQ(k) such that

A(k) = ∂3U(k) + Q(k).

Proof. Assume that, up to orderk − 1 (included),A(l)
abc, r

(l)
ab, u(l)

a , b(l) areT 2n-invariant.
Then, at orderk, we have

(i) R
(k)
abcd = ∂aA

(k)
bcd − ∂bA

(k)
acd +

∑
s+s′=k

s,s′>0

A
(s)p

bcA
(s′)

apd − A(s)p
acA

(s′)
bpd;

(ii) r(k)ac = −∂qA
(k)q

ac +
∑

s+s′=k

s,s′>0

A(s)p
qcA

(s′)q
ap;

(iii) ∂cr
(k)
ab −

∑
s+s′=k

s,s′>0

A(s)p
car

(s′)
pb + Γ (s)p

cbr
(s′)
ap = 1

2n + 1
(ωcbu

(k)
a + ωcau

(k)
b );

(iv) ∂bu
(k)
a −

∑
s+s′=k

s,s′>0

A
(s)p

bau
(s′)
p = − 1 + 2n

2(1 + n)

∑
s+s′=k

s,s′>0

r
(s)
bc r

(s′)c
a + b(k)ωba;

(v) ∂ab
(k) = 1

1 + n

∑
s+s′=k

s,s′>0

ū(s)cr(s
′)

ca .

Relation (v) implies that db(k) isT 2n-invariant. Hence db(k) = 0 andb(k) is a constant. An-
tisymmetrising (iv) we get that du(k)−b(k)ω is aT 2n-invariant 2-form, hence du(k) = 0 and

b(k)ωba − 1 + 2n

2(1 + n)

∑
s+s′=k
s,s′>0

r
(s)
bc r

′(s)c
a = 0.

Also

∂bu
(k)
a =

∑
s+s′=k

s,s′>0

A
(s)p

bau
′(s)
p .
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Using periodicity again and the fact that the right-hand side is a constant, we see that the
u
(k)
a are constants. Relation (iii) tells us, for the same reason, that ther

(k)
ab are constants.

Finally, from (i) and theWt = 0 condition, we get that∂aA
(k)
bcd− ∂bA

(k)
acd is a constant hence

∂aA
(k)
bcd − ∂bA

(k)
acd = 0. (1)

The reasoning ofLemma 10applies toEq. (1)so there exist a functionU(k) onT 2n and a
T 2n-invariant completely symmetric 3 tensorQ(k) such that

A(k) = ∂3U(k) + Q(k). �

We can now proceed to the proof of the main theorem.

Theorem 13. Let∇ t be a formal curve of symplectic connections on(T 2n, ω) with ∇0 the
standard connection, andWt = 0.Then there exists a formal curve of symplectomorphisms
ψt such that∇̃ t := ψt ·∇ t is a formal curve of symplectic connections which isT 2n-invariant
and hasW̃ t = 0, hence is flat. In particular, ∇ t is flat.

Proof. If ∇ t = ∇0 + ∑∞
k=0 tpA(p) is any formal curve of symplectic connections, one

defines as in(3) the action of a formal curveψt of symplectomorphisms on∇ t :

(ψt · ∇ t)XY = ψt · (∇ t

ψ−1
t ·Xψ−1

t · Y).
Consider a formal 1-parameter groupψf (t)of symplectomorphisms generated by a hamilto-
nian vector fieldXf (i(Xf )ω = df ) and consider the formal curve of symplectomorphisms
defined byψk

f (t) = ψf (t
k). Write

ψk
f (t) · ∇ t = ∇0 +

∞∑
p=0

tpÃ(p)

thenÃ(p) = A(p),∀p < k and

Ã
(k)
X Y = A

(k)
X Y + [Xf ,∇0

YZ] − ∇0
[Xf ,Y ]Z − ∇0

Y [Xf ,Z].

Observe that

[Xf ,∇0
YZ] − ∇0

[Xf ,Y ]Z − ∇0
Y [Xf ,Z] = R0(Xf , Y)Z + ((∇0)2Xf )(Y, Z)

andω(((∇0)2Xf )(Y, Z), T) = ((∇0)3f)(Y, Z, T).
Assume now that the curve∇t = ∇0+∑∞

k=0 tpA(p) is a curve of symplectic connections
on the torus(T 2n, ω) and that∇0 is the standard flat connection.

At order 1, we have seen inLemma 10that A(1) = (∇0)3U(1) + Q(1) so choosing
f1 = −U(1) andψ(1)(t) = ψf1(t) as defined above we see that

ψ(1)(t) · ∇ t = ∇0 + tQ̄(1) +
∞∑

p=2

tpÃ(p)

with ω(Q̄(1)(X)Y,Z) = Q(1)(X, Y, Z).
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Assume now that one has found a formal curveψ(k−1)(t) of symplectomorphisms so that

ψ(k−1)(t) · ∇ t = ∇0 +
k−1∑
p=1

tpQ̄(p) +
∞∑

p=k

tpÃ(p),

where theQ̄(p) areT 2n-invariant.
At order k, we have seen inLemma 12thatA(k) = (∇0)3U(k) + Q(k) whereQ(k) is

T 2n-invariant, so choosingfk = −U(k), ψk
fk
(t) as defined above andψ(k)(t) = ψfk

(tk) ◦
ψ(k−1)(t) we see that

ψ(k)(t) · ∇ t = ψfk
(tk) · ψ(k−1)(t) · ∇ t = ∇0 +

k∑
p=1

tpQ̄(p) +
∞∑

p=k+1

tpÃ(p)

with ω(Q̄(k)(X)Y,Z) = Q(k)(X, Y, Z). By induction this proves that one can build a formal
curve of symplectomorphisms

ψ(t) = · · · ◦ ψ(fk)(t
k) ◦ · · · ◦ ψf2(t

2) ◦ ψf1(t),

so that∇̃(t) := ψ(t)·∇(t) is a formal curve of symplectic connections which isT 2n-invariant
and hasW̃(t) = 0. Lifting the connection toR2n and usingLemma 9shows that∇̃(t) has
vanishing curvature. Since∇(t) = (ψ(t))−1 · ∇̃(t), its curvature is 0 so∇(t) is flat. �

The above theorem implies the following:

Theorem 14. Let ∇ t be an analytic curve of analytic symplectic connections on(T 2n, ω)

such that∇0 is the standard flat connection onT 2n, and such thatWt = 0. Then the
curvatureRt of ∇ t vanishes.

6. Equivalence of formal curves of connections

In this section we study the question of when two formal curves of flat invariant connec-
tions onT 2n are equivalent by a formal curve of symplectomorphisms. First we consider
the question on(R2n,Ω). Here it is easy to answer.

The first case to consider is the case of a single flat invariant connection∇A = ∇0 + A

on (R2n,Ω). We have seen that such a connection is given by a linear mapA : R
2n →

sp(2n,R) satisfyingA(X)A(Y) = 0 andΩ(A(X)Y,Z) completely symmetric. DefineψA :
R

2n → R
2n by

ψA(x) = x − 1
2A(x)x.

Proposition 15. ψA is a symplectomorphism of(R2n,Ω) satisfyingψA · ∇0 = ∇A.

Proof. It is enough to check thatψA is a symplectomorphism on constant vector fields. We
make extensive use of the fact thatA(X)A(Y) = 0. If X is a constant vector field then

ψA
∗ Xx = d

dt
ψA(x + tX)

∣∣∣∣
t=0

= (X − A(x)X)ψA(x),
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thusψA · X = X − A(·)X. Hence

Ω(ψA · X,ψA · Y)(x) = Ω(X − A(x)X, Y − A(x)Y) = Ω(X, Y).

It is easy to see thatψ−A is an inverse forψA so thatψA is a symplectomorphism. Indeed,
t → ψtA is a 1-parameter group of symplectomorphisms with generator the symplectic
vector field(XA)x = −1

2A(x)xx.
Finally, for constant vector fieldsX, Y

(ψA · ∇0)XY = ψA · (∇0
ψ−A·Xψ−A · Y) = ψA · ((X + A(·)X)(A(·)Y)).

But

(X + A(·)X)(A(·)Y)x = d

dt
A(x + t(X + A(x)X))Y

∣∣∣∣
t=0

= A(X)Y

so

(ψA · ∇0)XY = ψA · (A(X)Y) = A(X)Y = ∇A
XY. �

If ∇ t = ∇0+At is a formal curve of invariant flat connections on(R2n,Ω) given by a curve
of linear mapsAt : R

2n → sp(2n,R)[[ t]] satisfyingAt(X)At(Y) = 0 andΩ(At(X)Y,Z)

completely symmetric, we define a formal curve of vector fieldsXAt by

XAt (f)(x) = −1
2(At(x)x)xf

and set

ψAt = expXAt .

Proposition 16. ψAt is a formal curve of symplectomorphisms of(R2n,Ω) andψAt ·∇0 =
∇At

.

Proof. As the exponential of a derivation,ψAt is invertible with inverse exp(−XAt ) =
ψ−At . Moreover,ψAt · X = exp adXAtX and it is easy to verify that adXAtX = At(·)X,
(adXAt )2X = 0 so thatψAt ·X = X−At(·)X as before. Likewiseψ−At ·X = X+At(·)X
so that

(ψAt · ∇0)XY = ψAt · (∇0
ψ−At ·X(Y + At(·)Y)) = At(X)Y. �

In particular the above proves.

Theorem 17. For two curves∇̃ t and ∇̃′t of invariant flat connections of Ricci-type on
(R2n,Ω) with ∇̃0 = ∇̃′0 the trivial connection, there always exists a formal curve of
symplectomorphisms̃ψt so thatψ̃t · ∇̃ t = ∇̃′t .

Finally, we need to know what is the general form of a formal curve of symplectomor-
phisms of(R2n,Ω) which fixes the trivial connection∇0.
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Proposition 18. Let ψt = σ∗ ◦ expXt be a formal curve of symplectomorphisms with
ψt · ∇0 = ∇0 thenσ(x) = Cx+ d and(Xt)x = (Ct(x) + dt)x whereC ∈ Sp(2n,R), d ∈
R

2n, Ct ∈ tsp(2n,R)[[ t]] anddt ∈ tR2n[[ t]].

Proof. Evaluation att = 0 shows thatσ · ∇0 = ∇0 so thatσ(x) = Cx + d whereC ∈
Sp(2n,R) andd ∈ R

2n. Hence expXt · ∇0 = ∇0. ∇0 is the connection for which constant
vector fields are parallel, so(expXt · ∇0)XY = 0 for constant vector fieldsX, Y . Hence
∇0

exp(−Xt)·Xexp(−Xt)·Y = 0 and so∇0
X exp(−Xt)·Y = 0. But the only parallel vector fields

for ∇0 are the constant fields, so exp(−Xt) · Y is constant. The leading term is−t[X(1), Y ]
and hence [X(1), Y ] is constant. SinceX(1) is symplectic, this meansX(1)

x = (C1x + d1)x
whereC1 ∈ sp(2n,R). Further exptX(1) preserves∇0 and exp(−tX(1))◦expXt = expX′

t

with X′
t = O(t2) so we can recurse to conclude that(Xt)x = (Ct(x) + dt)x for formal

curvesCt ∈ tsp(2n,R)[[ t]] anddt ∈ tR2n[[ t]]. �

Theorem 19. Let∇ t and∇′t be two curves of invariant flat connections onT 2n with ∇0 =
∇′0 the trivial connection and suppose that there is a formal curve of symplectomorphismsψt

withψt ·∇ t = ∇′t then there is an elementC ∈ Sp(2n,Z) such that as a symplectomorphism
of T 2n we have∇′t = C · ∇ t .

Proof. We lift the connections andψt to R
2n and denote the lifts by a tilde.̃ψt · ∇̃ t = ∇̃′t .

Then∇̃ t = ∇0 + At , ∇̃′t = ∇0 + Bt whereAt, Bt : R
2n → sp(2n,R)[[ t]] are linear with

the usual properties. Thus

(ψ̃t ◦ ψAt ) · ∇0 = ψBt · ∇0

and hence

ψ̃t ◦ ψAt = ψBt ◦ σ∗ ◦ expXt,

whereσ(x) = Cx+ d and(Xt)x = (Ctx + dt)x.
Now ψBt ◦ σ∗ = σ∗ ◦ σ−1∗ ◦ expXBt ◦ σ∗ = σ∗ ◦ expσ · XBt and

(σ · XBt )x = (XC·Bt )x + ((C · Bt)(x)d)x − 1
2((C · Bt)(d)d)x

whilst the last two terms are in the semidirect producttsp(2n,R)[[ t]] + tR2n[[ t]] which is
pronilpotent. We can exponentiate this equation in the form

expσ · XBt = expXC·BtexpZt

with Zt ∈ tsp(2n,R)[[ t]] + tR2n[[ t]]. At order zero we see thatσ must be the lift ofψ0

and so must preserve the lattice:C ∈ Sp(2n,Z). Thenσ−1 ◦ ψ̃t descends to the torus and
leads off with the identity, so is of the form expLt whereLt is a formal series of periodic
vector fields onR2n. Thus we have, combining the terms in exptsp(2n,R)[[ t]] + tR2n[[ t]]
and renaming asZt ,

expLt = expXC·Bt expZt exp(−XAt ).
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Equating the coefficient oft on both sides we see that

L(1) = XC·B(1) + Z(1) − XA(1)

and since linear and quadratic functions are never periodic we see thatC · B(1) = A(1),
andL(1) = Z(1) is constant. A simple recursion (moving constant terms past expXC·Bt )
suffices to see thatAt = C · Bt . �

So we have the following:

Theorem 20. The moduli space of curves of Ricci-type symplectic connections starting
with the standard flat connection on(T 2n, ω) under the action of formal curves of sym-
plectomorphisms is described by the space of formal curvesAt : R

2n → sp(2n,R)[[ t]]
satisfyingAt(X)At(Y) = 0 andAt(X)Y = At(Y)X, modulo the action of Sp(2n,Z).

It is worth noting that a curve of Ricci-type connections on the torus is equivalent to the
constant curve at the trivial connection when lifted toR

2n.
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