JOURNAL OF

A formal moduli space of symplectic connections of Ricci-type on $T^{2 n}$

M. Cahen ${ }^{\text {a,* }}$, S. Gutt ${ }^{\text {a,b }}$, J. Horowitz ${ }^{\text {a }}$, J. Rawnsley ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Université Libre de Bruxelles, Campus Plaine, CP 218, bvd du Triomphe, 1050 Brussels, Belgium
${ }^{\text {b }}$ Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France
${ }^{\text {c }}$ Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Received 15 May 2002

Abstract

We consider analytic curves ∇^{t} of symplectic connections of Ricci-type on the torus $T^{2 n}$ with ∇^{0} the standard connection. We show, by a recursion argument, that if ∇^{t} is a formal curve of such connections then there exists a formal curve of symplectomorphisms ψ_{t} such that $\psi_{t} \cdot \nabla^{t}$ is a formal curve of flat $T^{2 n}$-invariant symplectic connections and so ∇^{t} is flat for all t. Applying this result to the Taylor series of the analytic curve, it means that analytic curves of symplectic connections of Ricci-type starting at ∇^{0} are also flat.

The group G of symplectomorphisms of the torus $\left(T^{2 n}, \omega\right)$ acts on the space \mathcal{E} of symplectic connections which are of Ricci-type. As a preliminary to study the moduli space \mathcal{E} / G we study the moduli of formal curves of connections under the action of formal curves of symplectomorphisms. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53C05; 58C35; 53C57
Subj. Class.: Differential geometry
Keywords: Symplectic connections; Ricci-type; Invariant flat connections; Formal curves of symplectomorphisms

1. Introduction

On any symplectic manifold (M, ω) the space \mathcal{S} of symplectic connections is an infinite dimensional affine space whose corresponding vector space is the space of completely

[^0]symmetric 3-tensors on M. To encode some geometry into a symplectic connection it thus seems reasonable to introduce a selection rule for symplectic connections. A variational principle associated to a Lagrangian density, which is an invariant quadratic polynomial in the curvature, has been considered in [1]; the symplectic connections satisfying the Euler-Lagrange equations are said to be preferred. The symplectomorphism group G of (M, ω) acts naturally on \mathcal{S} and stabilises the subspace \mathcal{P} of preferred symplectic connections. The first question we wanted to address is to give a description of the moduli space \mathcal{P} / G of preferred connections modulo the action of symplectomorphisms. Such a description was given in [1] when (M, ω) is a closed surface; but, up to now, very little has been done in the higher-dimensional situation.

We have observed that a linear condition on the curvature (the vanishing of one of its irreducible components-the non-Ricci component, W) implies the Euler-Lagrange equations. Furthermore, this condition seems to imply that many of the properties of the surface situation extend to the higher-dimensional case. We have called symplectic connections satisfying this curvature condition connections of Ricci-type (all symplectic connections in dimension 2 are of Ricci-type). This condition is preserved by symplectomorphisms and so we modify our initial question to the following one: give a description of the space \mathcal{E} of Ricci-type connections and its moduli space \mathcal{E} / G.

This paper is devoted to this modified question in the case where M is a torus $T^{2 n}$ and ω a $T^{2 n}$-invariant symplectic structure. Although we do not answer this question, we are able, in a formal setting made precise below, to show that the moduli space is infinite dimensional and to give a partial description of it.

If ∇^{t} is a formal curve of symplectic connections, we shall denote by W^{t} the W part of the curvature of ∇^{t}. We prove the following:

Theorem. Let ∇^{t} be a formal curve of symplectic connections on $\left(T^{2 n}, \omega\right)$ such that ∇^{0} is the standard flat connection on $T^{2 n}$, and such that $W^{t}=0$. Then the formal curvature R^{t} of ∇^{t} vanishes and there exists a formal curve of symplectomorphisms ψ_{t} such that $\tilde{\nabla}^{t}:=\psi_{t} \cdot \nabla^{t}$ is a formal curve of flat $T^{2 n}$-invariant symplectic connections.

This implies the following:
Theorem. Let ∇^{t} be an analytic curve of analytic symplectic connections on $\left(T^{2 n}, \omega\right)$ such that ∇^{0} is the standard flat connection on $T^{2 n}$, and such that $W^{t}=0$. Then the curvature R^{t} of ∇^{t} vanishes.

For the moduli space in the formal setting, we show:
Proposition. For two curves $\tilde{\nabla}^{t}$ and $\tilde{\nabla}^{\prime t}$ of invariant flat connections of Ricci-type on $\left(\mathbb{R}^{2 n}, \Omega\right)$ with $\tilde{\nabla}^{0}=\widetilde{\nabla}^{\prime}{ }^{0}$ the trivial connection, there always exists a formal curve of symplectomorphisms $\tilde{\psi}_{t}$ so that $\tilde{\psi}_{t} \cdot \tilde{\nabla}^{t}=\tilde{\nabla}^{\prime t}$.

Theorem. The moduli space of formal curves of Ricci-type symplectic connections starting with the standard flat connection on $\left(T^{2 n}, \omega\right)$ under the action of formal curves of symplectomorphisms is described by the space of formal curves of linear maps $A^{t}: \mathbb{R}^{2 n} \rightarrow$
$\mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ satisfying $A^{t}(X) A^{t}(Y)=0$ and $A^{t}(X) Y=A^{t}(Y) X$, modulo the action of $S p(2 n, \mathbb{Z})$.

The plan of the paper is as follows. In Section 2 we recall some general properties of symplectic connections having Ricci-type curvature. In Section 3 we introduce the notion of formal curves of connections and we show that the properties of Section 2 are still true for a formal curve of symplectic connections with Ricci-type curvature. In Section 4, we analyse the $W^{t}=0$ condition at order 1 and 2 for $\nabla^{t}=\nabla^{0}+\sum_{k=1}^{\infty} t^{k} A^{(k)}$ a formal curve of Ricci-type symplectic connections on $T^{2 n}$ with ∇^{0} the standard flat connection; in particular, we show that there exists a function $U^{(1)}$ and a completely symmetric, $T^{2 n}$-invariant 3-tensor $Q^{(1)}$ on $T^{2 n}$ such that $\underline{A}^{(1)}=\left(\nabla^{0}\right)^{3} U^{(1)}+Q^{(1)}$ and we show that $\nabla^{\prime t}=\nabla^{0}+t \bar{Q}^{(1)}$ (with $\left.\omega\left(\bar{Q}^{(1)}(X) Y, Z\right)=Q^{(1)}(X, Y, Z)\right)$ defines a curve of invariant flat symplectic connections on $\left(T^{2 n}, \omega\right)$. This remark can be formulated in a slightly different way: given $\nabla^{t}=\nabla^{0}+A^{(t)}$ a smooth curve of Ricci-type symplectic connections then, up to a symplectomorphism, the tangent vector to this family of connections lies in the finite dimensional space of flat $T^{2 n}$-invariant symplectic connections. Section 5 is devoted to a proof of a recurrence lemma which implies the first theorem. In Section 6 we study the question of when two formal curves of flat invariant connections on $T^{2 n}$ are equivalent by a formal curve of symplectomorphisms.

Thanks. We would like to thank Boguslaw Hajduk and Aleksy Tralle who pointed out a mistake in an earlier version of this paper.

2. Ricci-type curvature

A symplectic connection ∇ on a symplectic manifold (M, ω) is a linear connection having no torsion and for which ω is parallel $(\nabla \omega=0)$. The curvature endomorphism R of ∇ is

$$
R(X, Y) Z=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z
$$

for vector fields X, Y, Z on M. The symplectic curvature tensor

$$
R(X, Y ; Z, T)=\omega(R(X, Y) Z, T)
$$

is antisymmetric in its first two arguments, symmetric in its last two and satisfies the first Bianchi identity

$$
\underset{X, Y, Z}{\biguplus} R(X, Y ; Z, T)=0,
$$

where $\underset{b c d}{(+)}$ denotes the sum over the cyclic permutations of the listed set of elements. The second Bianchi identity takes the form

$$
\underset{X, Y, Z}{(+)}\left(\nabla_{X} R\right)(Y, Z)=0
$$

The Ricci tensor r is the symmetric 2-tensor

$$
r(X, Y)=\operatorname{Trace}[Z \mapsto R(X, Z) Y]
$$

If $\operatorname{dim} M=2 n \geq 4$, the curvature R of such a connection has two irreducible components under the action of the symplectic group $\operatorname{Sp}(2 n, \mathbb{R})$. We denote them by E and W :

$$
R=E+W
$$

The E component encodes the information contained in the Ricci tensor of ∇ and is called the Ricci part of the curvature tensor. It is given by

$$
\begin{aligned}
E(X, Y ; Z, T)= & \frac{-1}{2(n+1)}[2 \omega(X, Y) r(Z, T)+\omega(X, Z) r(Y, T)+\omega(X, T) r(Y, Z) \\
& -\omega(Y, Z) r(X, T)-\omega(Y, T) r(X, Z)]
\end{aligned}
$$

The curvature is said to be Ricci-type if the W component vanishes, i.e. when $R=E$.
Lemma 1. Let (M, ω) be a symplectic manifold of dimension $2 n \geq 4$. If the curvature of a symplectic connection ∇ on M is of Ricci-type then there is a 1-form u such that

$$
\left(\nabla_{X} r\right)(Y, Z)=\frac{1}{2 n+1}(\omega(X, Y) u(Z)+\omega(X, Z) u(Y))
$$

Conversely, if there is such a 1-form u, the "Weyl" part of the curvature, $W=R-E$ satisfies

$$
\underset{X, Y, Z}{\biguplus}\left(\nabla_{X} W\right)(Y, Z ; T, U)=0 .
$$

Proof. The property follows from the second Bianchi's identity, see [2].
Corollary 2. A symplectic manifold with a symplectic connection whose curvature is of Ricci-type is locally symmetric if and only if the 1-form u, defined in the lemma, vanishes.

Denote by ρ the linear endomorphism such that

$$
r(X, Y)=\omega(X, \rho Y)
$$

The symmetry of r is equivalent to saying that ρ is in the Lie algebra of the symplectic group $\operatorname{Sp}(T M, \omega)$. For an integer $p>1$, define

$$
\stackrel{(p)}{r}(X, Y)=\omega\left(X, \rho^{p} Y\right) .
$$

It is symmetric when p is odd and antisymmetric when p is even.
Lemma 3. Let (M, ω) be a symplectic manifold with a symplectic connection ∇ with Ricci-type curvature. Then, the following identities hold:
(1) There is a function b such that

$$
\nabla u=-\frac{1+2 n}{2(1+n)} \stackrel{(2)}{r}+b \omega,
$$

(2) The differential of the function b is given by

$$
\mathrm{d} b=\frac{1}{1+n} i(\bar{u}) r,
$$

where \bar{u} is the vector field such that $i(\bar{u}) \omega=u$;
(3) When M is connected

$$
b+\frac{2 n+1}{4(1+n)} \text { Trace } \rho^{2}
$$

is constant.
Proof. These identities follow from Lemma 1, see [2].
Let the torus $T^{2 n}$ be endowed with a $T^{2 n}$-invariant symplectic structure ω. Let ∇ be a symplectic connection on $\left(T^{2 n}, \omega\right)$ which is of Ricci-type. The group G of symplectomorphisms of $\left(T^{2 n}, \omega\right)$ acts on the set \mathcal{E} of symplectic connections with $W=0$. We are interested in the set of orbits of G in \mathcal{E}, i.e. in \mathcal{E} / G.

We now consider the symplectic vector space $\left(\mathbb{R}^{2 n}, \Omega\right)$ and view Ω as a translation invariant symplectic structure. A symplectic connection on $\mathbb{R}^{2 n}$ will be determined by its values on translation invariant vector fields. If, in addition, the connection ∇ is translation invariant then $B(X) Y:=\nabla_{X} Y$ (for invariant vector fields X, Y) defines a linear map $B: \mathbb{R}^{2 n} \rightarrow \mathfrak{s p}(2 n, \mathbb{R})$ which completely determines ∇. The only condition on B is that $\Omega(B(X) Y, Z)$ is completely symmetric.

Proposition 4. Let ∇ be a translation invariant symplectic connection on $\left(\mathbb{R}^{2 n}, \Omega\right)$ and let $B(X) Y=\nabla_{X} Y$ as above. If ∇ is of Ricci-type and $2 n \geq 4$, then ∇ is flat and $B(X) B(Y)=0$.

Proof. Since B is constant, the curvature endomorphism is given by

$$
R(X, Y)=[B(X), B(Y)]
$$

and so the Ricci tensor is given by

$$
r(X, Y)=\operatorname{Trace}(B(X) B(Y))
$$

It is easy to see that symplectic curvature tensors $R(X, Y ; Z, T)$ are, in fact, determined by the terms of the form $R(X, Y ; X, Y)$ so that the equation $W=0$ is equivalent to $R(X, Y ; X, Y)=$ $-(2 /(n+1)) \Omega(X, Y) r(X, Y)$ and in the present case this has the form

$$
(n+1) \Omega(B(X) X, B(Y) Y)=-2 \Omega(X, Y) r(X, Y)
$$

Polarising the equation in X we have

$$
\begin{aligned}
(n+1) \Omega(T, B(X) B(Y) Y) & =\Omega(X, Y) r(T, Y)+\Omega(T, Y) r(X, Y) \\
& =\Omega(X, Y) \Omega(T, \rho Y)+\Omega(T, Y) \Omega(X, \rho Y),
\end{aligned}
$$

so that $W=0$ is equivalent to

$$
(n+1) B(X) B(Y) Y=\Omega(X, Y) \rho Y+\Omega(X, \rho Y) Y .
$$

Polarising this in Y we have

$$
\begin{equation*}
2(n+1) B(X) B(Y) Z=\Omega(X, Y) \rho Z+\Omega(X, \rho Y) Z+\Omega(X, Z) \rho Y+\Omega(X, \rho Z) Y . \tag{1}
\end{equation*}
$$

Now choose dual bases X^{i}, X_{i} for $\mathbb{R}^{2 n}$ with $\Omega\left(X^{i}, X_{j}\right)=\delta_{j}^{i}$ then an easy calculation shows

$$
\rho=\sum_{i} B\left(X^{i}\right) B\left(X_{i}\right) .
$$

If we multiply (1) by $B\left(X^{i}\right)$, set $X=X_{i}$ and sum we get

$$
(n+1) \rho B(Y) Z=-B(Y) \rho Z-B(Z) \rho Y .
$$

Alternatively, we may substitute $B\left(X_{i}\right) Z$ for Z in (1), set $Y=X^{i}$ and sum to give

$$
(n+1) B(X) \rho Z=-\rho B(Z) X+B(Z) \rho X .
$$

Adding the two equations after setting $X=Y$ we see that

$$
\rho B(X)=-B(X) \rho
$$

and hence that

$$
(n-1) \rho B(X)=0 .
$$

Thus, if $2 n \geq 4$

$$
\rho B(X)=B(X) \rho=0 \quad \Rightarrow \rho^{2}=0
$$

Substituting ρZ for Z in (1) we have

$$
0=r(X, Y) \rho Z+r(X, Z) \rho Y
$$

and setting $Z=Y$, applying $\Omega(X,$.$) we get finally$

$$
0=r(X, Y)^{2}
$$

Thus the Ricci tensor vanishes, and hence ∇ is flat.
Putting $\rho=0$ in (1) yields $B(X) B(Y)=0$.

3. Formal curves

Definition 5. A formal curve of symplectic connections on a symplectic manifold (M, ω) is a formal power series

$$
\nabla^{t}=\nabla+\sum_{k=1}^{\infty} t^{k} A^{(k)}
$$

where ∇ is a symplectic connection on M, and the $A^{(k)}$ are $(2,1)$ tensors such that

$$
\begin{equation*}
\underline{A}^{(k)}(X, Y, Z):=\omega\left(A^{(k)}(X) Y, Z\right) \tag{2}
\end{equation*}
$$

is totally symmetric.

Definition 6. A formal curve of symplectomorphisms is a homomorphism of Poisson algebras

$$
\psi_{t}: C^{\infty}(M) \rightarrow C^{\infty}(M) \llbracket t \rrbracket, \quad \psi_{t}=\psi^{(0)}+\sum_{k=1}^{\infty} t^{k} \psi^{(k)}
$$

such that $\psi^{(0)}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is an isomorphism.
The leading term $\psi^{(0)}$ of a formal curve of symplectomorphisms is given by composition with a symplectomorphism $\psi^{(0)}(f)=f \circ \sigma=\sigma^{*}(f)$ so that we may take such a term out as a common factor and write $\psi_{t}=\sigma^{*} \circ \phi_{t}$ and $\phi_{t}=\mathrm{id}+\sum_{k \geq 1} t^{k} \phi^{(k)}$.

If $\phi_{t}=\mathrm{id}+\sum_{k \geq 1} t^{k} \phi^{(k)}$ is a formal curve of symplectomorphisms beginning with the identity then the first-order term $X^{(1)}=\phi^{(1)}$ is a symplectic vector field. Moreover, for any symplectic vector field, $\exp t X=\mathrm{id}+\sum_{k \geq 1} t^{k} / k!X^{k}$ is a formal curve of symplectomorphisms. A straightforward recursion argument then shows that any formal curve of symplectomorphisms beginning with the identity can be written in the form $\phi_{t}=\exp X_{t}$, where $X_{t}=\sum_{k \geq 1} t^{k} X^{(k)}$ is a formal curve of vector fields.

Definition 7. A formal 1-parameter group of symplectomorphisms is a formal curve of symplectomorphisms ψ_{t} such that $\psi_{a t} \circ \psi_{b t}=\psi_{(a+b) t}$ for all $a, b \in \mathbb{R}$.

In order for this definition to make sense we first have to extend ψ_{t} by linearity over $\mathbb{R} \llbracket t \rrbracket$ to a morphism of $\mathbb{R} \llbracket t \rrbracket$ algebras. The definition then implies that $\psi^{(0)}$ is the identity and that $\psi^{(1)}(f)=X(f)$ for some symplectic vector field which we call the infinitesimal generator of ψ_{t}. It is easy to see that every formal 1-parameter group of symplectomorphisms has the form $\psi_{t}=\exp t X$. Moreover, a recursion shows that, if X_{t} is a formal curve of symplectic vector fields, we can find a second sequence of symplectic vector fields $Y^{(k)}$ such that

$$
\exp X_{t}=\exp t Y^{(1)} \circ \exp t^{2} Y^{(2)} \circ \cdots \circ \exp t^{k} Y^{(k)} \circ \cdots
$$

and so any formal curve of symplectomorphisms ψ_{t} can be factorised in two ways

$$
\psi_{t}=\sigma^{*} \circ \exp X_{t}=\sigma^{*} \circ \phi_{t}^{(1)} \circ \phi_{t^{2}}^{(2)} \circ \cdots \circ \phi_{t^{k}}^{(k)} \circ \cdots,
$$

where the $\phi_{t}^{(k)}$ are formal 1-parameter groups of symplectomorphisms.
Remark that a formal curve of symplectomorphisms ψ_{t} acts on a formal curve of vector fields X_{t} viewed as a $\mathbb{R} \llbracket t \rrbracket$-linear derivation of $C^{\infty}(M) \llbracket t \rrbracket$ by

$$
\left(\psi_{t} \cdot X_{t}\right) f=\psi_{t}\left(X_{t}\left(\psi_{t}^{-1} f\right)\right)
$$

and acts on a formal curve of symplectic connections ∇^{t} by

$$
\begin{equation*}
\left(\psi_{t} \cdot \nabla^{t}\right)_{X} Y=\psi_{t} \cdot\left(\nabla_{\psi_{t}^{-1} \cdot X}^{t} \psi_{t}^{-1} \cdot Y\right) \tag{3}
\end{equation*}
$$

Let ∇^{t} be a formal curve of symplectic connections on a symplectic manifold (M, ω) of dimension $2 n$,

$$
\nabla^{t}=\nabla+\sum_{k=1}^{\infty} t^{k} A^{(k)}
$$

We denote as in (2) by $\underline{A}^{(k)}$ the corresponding symmetric 3-tensors. The formal curvature endomorphism R^{t} of ∇^{t} is $R^{t}(X, Y)=\nabla_{X}^{t} \circ \nabla_{Y}^{t}-\nabla_{Y}^{t} \circ \nabla_{X}^{t}-\nabla_{[X, Y]}^{t}$ so that

$$
R^{t}=R^{\nabla}+\sum_{k=1}^{\infty} t^{k} R^{(k)}
$$

with

$$
\begin{equation*}
R^{(k)}(X, Y)=\left(\nabla_{X} A^{(k)}\right)(Y)-\left(\nabla_{Y} A^{(k)}\right)(X)+\sum_{\substack{p+q=k \\ p, q \geq 1}}\left[A^{(p)}(X), A^{(q)}(Y)\right] . \tag{4}
\end{equation*}
$$

The symplectic curvature tensor $R^{t}(X, Y ; Z, T)=\omega\left(R^{t}(X, Y) Z, T\right)$ is antisymmetric in its first two arguments, symmetric in its last two, satisfies the first Bianchi identity $\stackrel{\biguplus}{\oplus}{ }_{X, Y, Z} R^{t}(X, Y ; Z, T)=0$ and the second Bianchi identity $\underset{X, Y, Z}{\oplus}\left(\nabla_{X}^{t} R^{t}\right)(Y, Z)=0$.

The formal Ricci tensor is $r^{t}(X, Y)=\operatorname{Trace}\left[Z \mapsto R^{t}(X, Z) Y\right]$, so that

$$
r^{t}=r^{\nabla}+\sum_{k=1}^{\infty} t^{k} r^{(k)}
$$

where the $r^{(k)}$ are the symmetric tensors

$$
\begin{equation*}
r^{(k)}(X, Y)=\operatorname{Trace}\left[Z \mapsto\left(\nabla_{Z} A^{(k)}\right)(X) Y\right]+\sum_{\substack{p+q=k \\ p, q \geq 1}} \operatorname{Trace} A^{(p)}(X) A^{(q)}(Y) \tag{5}
\end{equation*}
$$

The Ricci part E^{t} of the formal curvature tensor is given by

$$
\begin{align*}
E^{t}(X, Y ; Z, T)= & \frac{-1}{2(n+1)}\left[2 \omega(X, Y) r^{t}(Z, T)+\omega(X, Z) r^{t}(Y, T)+\omega(X, T) r^{t}(Y, Z)\right. \\
& \left.-\omega(Y, Z) r^{t}(X, T)-\omega(Y, T) r^{t}(X, Z)\right] . \tag{6}
\end{align*}
$$

The formal curvature is said to be of Ricci-type when $R^{t}=E^{t}$.
Lemma 8. Let (M, ω) be a symplectic manifold of dimension $2 n \geq 4$. If the formal curvature of a formal curve of symplectic connections ∇^{t} on M is of Ricci-type then there exists a formal curve of 1-forms

$$
u^{t}=\sum_{k=0}^{\infty} t^{k} u^{(k)}
$$

such that

$$
\begin{equation*}
\left(\nabla_{X}^{t} r^{t}\right)(Y, Z)=\frac{1}{2 n+1}\left(\omega(X, Y) u^{t}(Z)+\omega(X, Z) u^{t}(Y)\right) \tag{7}
\end{equation*}
$$

and there exists a formal curve of functions

$$
b^{t}=\sum_{k=0}^{\infty} t^{k} b^{(k)}
$$

such that

$$
\begin{equation*}
\nabla^{t} u^{t}=-\frac{1+2 n}{2(1+n)} r^{(2)}+b^{t} \omega \tag{8}
\end{equation*}
$$

with $\omega\left(X,\left(\rho^{t}\right) Y\right)=r^{t}(X, Y)=$ and $r^{t(2)}(X, Y)=\omega\left(X,\left(\rho^{t}\right)^{2} Y\right)$. Also

$$
\begin{equation*}
\mathrm{d} b^{t}=\frac{1}{1+n} i\left(\bar{u}^{t}\right) r^{t} \tag{9}
\end{equation*}
$$

Lemma 9. Let ∇^{t} be a formal curve of translation invariant symplectic connections on $\left(\mathbb{R}^{2 n}, \Omega\right)$ and let $B^{t}(X) Y:=\nabla_{X}^{t} Y$ (for invariant vector fields $\left.X, Y\right)$. If ∇^{t} is of Ricci-type and $2 n \geq 4$, then ∇^{t} is flat and $B^{t}(X) B^{t}(Y)=0$.

Proof. We can copy in the formal series setting the proof of Lemma 9. Write $B^{t}=$ $\sum_{k=0}^{\infty} t^{k} B^{(k)}$ where the $B^{(k)}$ are constant maps from $\mathbb{R}^{2 n}$ to $\operatorname{sp}\left(\mathbb{R}^{2 n}, \Omega\right)$. The formal curvature endomorphism is given by

$$
R^{t}(X, Y)=\left[B^{t}(X), B^{t}(Y)\right]
$$

i.e.

$$
R^{(k)}(X, Y)=\sum_{\substack{p+q=k \\ p, q \geq 0}}\left[B^{p}(X), B^{q}(Y)\right]
$$

and the formal Ricci tensor is given by

$$
r^{t}(X, Y)=\operatorname{Trace}\left(B^{t}(X) B^{t}(Y)\right)
$$

i.e.

$$
r^{(k)}(X, Y)=\sum_{\substack{p+q=k \\ p, q \geq 0}} \operatorname{Trace} B^{p}(X) B^{q}(Y)
$$

The equation $W^{t}=0$ is again equivalent to

$$
2(n+1) B^{t}(X) B^{t}(Y) Z=\Omega(X, Y) \rho^{t} Z+\Omega\left(X, \rho^{t} Y\right) Z+\Omega(X, Z) \rho^{t} Y+\Omega\left(X, \rho^{t} Z\right) Y
$$

i.e.

$$
\begin{align*}
& \sum_{\substack{p+q=k \\
p, q \geq 0}} 2(n+1) B^{(p)}(X) B^{(q)}(Y) Z \\
& \quad=\Omega(X, Y) \rho^{(k)} Z+\Omega\left(X, \rho^{(k)} Y\right) Z+\Omega(X, Z) \rho^{(k)} Y+\Omega\left(X, \rho^{(k)} Z\right) Y . \tag{10}
\end{align*}
$$

Choosing dual bases X^{i}, X_{i} for $\mathbb{R}^{2 n}$ with $\Omega\left(X^{i}, X_{j}\right)=\delta_{j}^{i}$ then

$$
\rho^{t}=\sum_{i} B^{t}\left(X^{i}\right) B^{t}\left(X_{i}\right),
$$

i.e.

$$
\rho^{(k)}=\sum_{p+q=k} \sum_{i} B^{(p)}\left(X^{i}\right) B^{(q)}\left(X_{i}\right) .
$$

If we multiply (10) by $B^{\left(k^{\prime}\right)}\left(X^{i}\right)$, set $X=X_{i}$ and sum over i and over $k, k^{\prime} \geq 0$ so that $k+k^{\prime}=K$ we get

$$
(n+1) \sum_{\substack{q^{\prime}+q=K \\ q, q^{\prime} \geq 0}} \rho^{\left(q^{\prime}\right)} B^{(q)}(Y) Z=\sum_{\substack{k^{\prime}+k=K \\ k^{\prime}, k^{\prime} \geq 0}}\left(-B^{\left(k^{\prime}\right)}(Y) \rho^{(k)} Z-B^{\left(k^{\prime}\right)}(Z) \rho^{(k)} Y\right) .
$$

This can be written in terms of formal series

$$
(n+1) \rho^{t} B^{t}(Y) Z=-B^{t}(Y) \rho^{t} Z-B^{t}(Z) \rho^{t} Y .
$$

Alternatively, we may substitute $B^{(s)}\left(X_{i}\right) Z$ for Z in (10), set $Y=X^{i}$ and sum to give

$$
(n+1) B^{t}(X) \rho^{t} Z=-\rho^{t} B^{t}(Z) X+B^{t}(Z) \rho^{t} X
$$

Adding the two equations after setting $X=Y$, we see that $\rho^{t} B^{t}(X)=-B^{t}(X) \rho^{t}$, so $(n-1) \rho^{t} B^{t}(X)=0$ and, if $2 n \geq 4, \rho^{t} B^{t}(X)=B^{t}(X) \rho^{t}=0$ thus $\left(\rho^{t}\right)^{2}=0$. This in turn implies $r^{t}=0$, hence $R^{t}=0$ and ∇ is flat. Putting $\rho^{t}=0$ in (10) yields $B^{t}(X) B^{t}(Y)=0$.

4. Curves of Ricci-type connections on the torus

Consider the torus $T^{2 n}$ endowed with a $T^{2 n}$-invariant symplectic structure ω. Let ∇^{0} be the standard flat, $T^{2 n}$-invariant symplectic connection on $\left(T^{2 n}, \omega\right)$. Let

$$
\nabla^{t}=\nabla^{0}+\sum_{k=1}^{\infty} t^{k} A^{(k)}
$$

be a formal curve of symplectic connections such that $W(t)=0$. We denote as before (2) by $\underline{A}^{(k)}$ the corresponding symmetric 3-tensors $\left(\underline{A}^{(k)}(X, Y, Z)=\omega\left(A^{(k)}(X) Y, Z\right)\right)$.

We consider, as given by Lemma 8, the corresponding formal curve of 1 -forms $u^{t}=$ $\sum_{k=0}^{\infty} t^{k} u^{(k)}$ and the formal curve of functions $b^{t}=\sum_{k=0}^{\infty} t^{k} b^{(k)}$; clearly $u^{(0)}=0$ and $b^{(0)}=0$ since $r^{\nabla^{0}}=0$.

Lemma 10. If $\nabla^{t}=\nabla^{0}+\sum_{k=1}^{\infty} t^{k} A^{(k)}$ is a formal curve of symplectic connections such that $W(t)=0$, then the formal curvature vanishes at order 1 in t (i.e. one has $b^{(1)}=0$, $u^{(1)}=0, r^{(1)}=0, R^{(1)}=0$). Furthermore, there exists a function $U^{(1)}$ and a completely symmetric, $T^{2 n}$-invariant 3 -tensor $Q^{(1)}$ on $T^{2 n}$ such that

$$
\underline{A}^{(1)}=\left(\nabla^{0}\right)^{3} U^{(1)}+Q^{(1)} .
$$

Proof. Denote by $x^{a}(1 \leq a \leq 2 n)$ the standard angle variables on $T^{2 n}$ and by ∂_{a} the corresponding $T^{2 n}$-invariant vector fields on $T^{2 n}$ (the standard flat connection is defined by $\nabla_{\partial_{a}}^{0} \partial_{b}=0$).

At order 1 , since $b^{(0)}=0, u^{(0)}=0, r^{0}=0$, we have
(1) $\mathrm{d} b^{(1)}=0$ by (9), so $b^{(1)}$ is a constant;
(2) $\mathrm{d} u^{(1)}=b^{(1)} \omega$ by (8); but ω is not exact by compactness of $T^{2 n}$ so $b^{(1)}=0$ and $\nabla^{0} u^{(1)}=0$ thus $u^{(1)}(X)$ is a constant for any $T^{2 n}$-invariant vector field X on $T^{2 n}$;
(3) Eq. (7) at order 1 yields $\left(\nabla^{0} r^{1}\right)$ as a combination of products of ω and u^{1} so that $\partial_{a}\left(r^{(1)}\left(\partial_{b}, \partial_{c}\right)\right)$ is a constant; the periodicity of the angles x^{a} implies then that $\partial_{a}\left(r^{(1)}\right.$ $\left.\left(\partial_{b}, \partial_{c}\right)\right)=0$ so $u^{(1)}=0$ and $r^{(1)}\left(\partial_{b}, \partial_{c}\right)=a_{a b}^{(1)}$ is a constant.
The definition of the (formal) Ricci tensor (5) yields $a_{a b}^{(1)}=-\partial_{q} A{ }_{a b}^{(1) q}$ at order 1, hence, for each value of the indices a, b, the $2 n$-form $a_{a b}^{(1)} \omega^{n}$ is exact; this implies

$$
a_{a b}^{(1)}=0 \quad \text { so } r^{(1)}=0 \text { and thus } R^{(1)}=0
$$

The definition of the (formal) curvature tensor (4) at order 1 gives $R_{a b c d}^{(1)}=\partial_{a} \underline{A}_{b c d}^{(1)}-\partial_{b} \underline{A_{a c d}}{ }^{(1)}$. Hence, for each value of the indices c, d the 1-form $\underline{A}_{c d}^{(1)}$ is closed, so there exist functions $k_{c d}$ on $T^{2 n}$ and constants $Q_{b c d}^{(1)}$ such that

$$
\underline{A}_{b c d}^{(1)}=\partial_{b} k_{c d}^{(1)}+Q_{b c d}^{(1)}
$$

Since ∇^{t} is symplectic, $\underline{A}_{b c d}^{(1)}$ is totally symmetric; the fact that $\underline{A}_{b c d}^{(1)}-\underline{A}_{c b d}^{(1)}=0$ implies

$$
\partial_{b} k_{c d}^{(1)}-\partial_{c} k_{b d}^{(1)}=-Q_{b c d}^{(1)}+Q_{c b d}^{(1)} .
$$

When d is fixed, the left-hand side is an exact 2-form. The right-hand side is $T^{2 n}$-invariant. Since there are no non-zero exact $T^{2 n}$-invariant forms, this implies

$$
Q_{b c d}^{(1)}=Q_{c b d}^{(1)}, \quad \partial_{b} k_{c d}^{(1)}-\partial_{c} k_{b d}^{(1)}=0
$$

Similarly, $\underline{A}_{b c d}^{(1)}-\underline{A}_{b d c}^{(1)}=0$ gives

$$
\partial_{b} k_{c d}^{(1)}-\partial_{b} k_{d c}^{(1)}=-Q_{b c d}^{(1)}+Q_{b d c}^{(1)} .
$$

In this case, when c and d are fixed, the left-hand side is an exact 1-form, while the right-hand side is $T^{2 n}$-invariant. For the same reason as above, we deduce that both members vanish:

$$
Q_{b c d}^{(1)}=Q_{b d c}^{(1)}, \quad k_{c d}^{(1)}-k_{d c}^{(1)}=\text { constant } .
$$

Hence $Q_{b c d}^{(1)}$ is completely symmetric. Furthermore, for each fixed index d, the 1-form $k_{\cdot d}^{(1)}$ is closed. Hence there exist functions $S_{d}^{(1)}$ and constants $T_{c d}$ such that

$$
k_{c d}^{(1)}=\partial_{c} S_{d}^{(1)}+T_{c d}^{(1)} .
$$

The fact that $k_{c d}^{(1)}-k_{d c}^{(1)}$ is a constant implies for the 1-form $S{ }^{(1)}$ that $\mathrm{d} S^{(1)}$ is $T^{2 n}$-invariant, thus $S^{(1)}$ is closed. Hence there exists a function $U^{(1)}$ and constants $V_{d}^{(1)}$ such that

$$
S_{d}^{(1)}=\partial_{d} U^{(1)}+V_{d}^{(1)}
$$

Substituting, we have

$$
\underline{A}_{b c d}^{(1)}=\partial_{b c d}^{3} U^{(1)}+Q_{b c d}^{(1)} .
$$

Lemma 11. If $\nabla^{t}=\nabla^{0}+\sum_{k=1}^{\infty} t^{k} A^{(k)}$ is a formal curve of symplectic connections such that $W(t)=0$, then the curvature vanishes at order 2 in t (i.e. $b^{(2)}=0, u^{(2)}=0, r^{(2)}=0$, $\left.R^{(2)}=0\right)$.

Writing $\underline{A}^{(1)}=\left(\nabla^{0}\right)^{3} U^{(1)}+Q^{(1)}$ as in Lemma 10, the formula $\nabla^{\prime t}=\nabla^{0}+t \bar{Q}^{(1)}$, where $\omega\left(\bar{Q}^{(1)}(X) Y, Z\right)=Q^{(1)}(X, Y, Z)$, defines a curve of invariant flat symplectic connections on $\left(T^{2 n}, \omega\right)$.

Furthermore, there exist a function $U^{(2)}$ and a $T^{2 n}$-invariant, completely symmetric tensor $Q^{(2)}$ such that

$$
\underline{A}_{b c d}^{(2)}=\underset{b c d}{\oplus} U^{(1) p}{ }_{b}\left(Q_{p c d}^{(1)}+\frac{1}{2} U_{p c d}^{(1)}\right)+\frac{1}{2} U^{(1) p} U_{p b c d}^{(1)}+\partial_{b c d}^{3} U^{(2)}+Q_{b c d}^{(2)},
$$

where

$$
U_{p_{1}, \ldots, p_{k}}^{(1)}=\partial_{p_{1}, \ldots, p_{k}}^{k} U^{(1)}, \quad U^{(1) p}{ }_{q_{1}, \ldots, q_{k}}=\partial_{q_{1}, \ldots, q_{k}}^{k+1} U^{(1)} \omega^{q p}, \quad \omega^{p q} \omega_{q l}=\delta_{l}^{p} .
$$

Proof. At order 2, since $b^{(0)}=b^{(1)}=0, u^{(0)}=u^{(1)}=0, r^{(0)}=r^{(1)}=0$
(1) $\mathrm{d} b^{(2)}=0$ by (9), so $b^{(2)}$ is a constant;
(2) $\mathrm{d} u^{(2)}=b^{(2)} \omega$ by (8); so $b^{(2)}=0$ and $\nabla^{0} u^{(2)}=0$;
(3) Eq. (7) at order 2 yields that $\partial_{a}\left(r^{(2)}\left(\partial_{b}, \partial_{c}\right)\right)$ is a constant; again this implies $u^{(2)}=0$ and $r^{(2)}\left(\partial_{b}, \partial_{c}\right)=a_{a b}^{(2)}$ is a constant.
The definition of the (formal) Ricci tensor yields $a_{a b}^{(2)}=-\partial_{q} A_{a b}^{(2) q}+A{ }_{q b}^{(1) p} A^{(1) q}{ }_{a p}$; using Lemma 10 with $Q^{(1) p}{ }_{q b}=Q_{q b k}^{(1)} \omega^{k p}$:

$$
\begin{aligned}
A^{(1) p} A_{q b}^{(1) q}{ }_{a p}= & Q^{(1) p}{ }_{q b} Q^{(1) q}{ }_{a p}+\partial_{q}\left(Q^{(1) q}{ }_{a p} U^{(1) p}{ }_{b}\right)+\partial_{p}\left(U^{(1) q}{ }_{a} Q^{(1) p}{ }_{q b}\right) \\
& +\partial_{q}\left(U^{(1) p}{ }_{b} U^{(1) q}{ }_{a p}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
a_{a b}^{(2)}= & Q^{(1) p}{ }_{q b} Q^{(1) q}{ }_{a p}-\partial_{q}\left(A_{a b}^{(2) q}-U^{(1) p}{ }_{b} Q^{(1) q}{ }_{a p}\right. \\
& \left.-U^{(1) p}{ }_{a} Q^{(1) q}{ }_{p b}-U^{(1) p}{ }_{b} U^{(1) q}{ }_{a p}\right) .
\end{aligned}
$$

Since there are no exact, non-zero, $T^{2 n}$-invariant $2 n$-forms on $T^{2 n}$, we have

$$
\begin{aligned}
& a_{a b}^{(2)}=Q^{(1) p}{ }_{q b} Q^{(1) q}{ }_{a p}, \\
& \partial_{q}\left(A^{(2) q}{ }_{a b}-U^{(1) p}{ }_{b} Q^{(1) q}{ }_{a p}-U^{(1) p}{ }_{a} Q^{(1) q}{ }_{p b}-U^{(1) p}{ }_{b} U^{(1) q}{ }_{a p}\right)=0 .
\end{aligned}
$$

The definition of the (formal) curvature tensor at order 2 gives $R_{a b c d}^{(2)}=\partial_{a} \underline{A}_{b c d}^{(2)}-\partial_{b} \underline{A}_{a c d}^{(2)}+$ $A^{(1) p}{ }_{b c} \underline{A}_{a p d}^{(1)}-A^{(1) p}{ }_{a c} \underline{A}_{b p d}^{(1)}$. Using Lemma 10 we get

$$
\begin{aligned}
R_{a b c d}^{(2)}= & \partial_{a}\left(\underline{A}_{b c d}^{(2)}+U^{(1)}{ }_{p d} Q^{(1) p}{ }_{b c}-U^{(1) p}{ }_{c} Q^{(1)}{ }_{b p d}-U^{(1) p}{ }_{c} U^{(1)}{ }_{b p d}\right) \\
& -\partial_{b}\left(\underline{A}_{a c d}^{(2)}+U^{(1)}{ }_{p d} Q^{(1) p}{ }_{a c}-U^{(1) p}{ }_{c} Q^{(1)}{ }_{a p d}-U^{(1) p}{ }_{c} U^{(1)}{ }_{a p d}\right) \\
& +Q^{(1) p}{ }_{b c} Q^{(1)}{ }_{a p d}-Q^{(1) p}{ }_{a c} Q^{(1)}{ }_{b p d} .
\end{aligned}
$$

The $W^{(2)}=0$ condition says that

$$
R_{a b c d}^{(2)}=-\frac{1}{2(n+1)}\left[2 \omega_{a b} a_{c d}^{(2)}+\omega_{a c} a_{b d}^{(2)}+\omega_{a d} a_{b c}^{(2)}-\omega_{b c} a_{a d}^{(2)}-\omega_{b d} a_{a c}^{(2)}\right]
$$

The fact that there does not exist a non-zero $T^{2 n}$-invariant exact 2-form implies on the one hand

$$
\begin{aligned}
& \partial_{a}\left(\underline{A}_{b c d}^{(2)}+U^{(1)}{ }_{p d} Q^{(1) p}{ }_{b c}-U^{(1) p}{ }_{c} Q^{(1)}{ }_{b p d}-U^{(1) p}{ }_{c} U^{(1)}{ }_{b p d}\right) \\
& \quad-\partial_{b}\left(\underline{A}_{a c d}^{(2)}+U^{(1)}{ }_{p d} Q^{(1) p}{ }_{a c}-U^{(1) p}{ }_{c} Q^{(1)}{ }_{a p d}-U^{(1) p}{ }_{c} U^{(1)}{ }_{a p d}\right)=0,
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
& Q^{(1) p}{ }_{b c} Q^{(1)}{ }_{a p d}-Q^{(1) p}{ }_{a c} Q^{(1)}{ }_{b p d} \\
& \quad=-\frac{1}{2(n+1)}\left[2 \omega_{a b} a_{c d}^{(2)}+\omega_{a c} a_{b d}^{(2)}+\omega_{a d} a_{b c}^{(2)}-\omega_{b c} a_{a d}^{(2)}-\omega_{b d} a_{a c}^{(2)}\right],
\end{aligned}
$$

where $a_{a b}^{(2)}=Q^{(1) p}{ }_{q b} Q^{(1) q}{ }_{a p}$.
This last relation tells us that the $T^{2 n}$-invariant connection defined by $\nabla^{0}+t Q^{(1)}$ (which is symplectic because of the complete symmetry) has a W tensor which is zero. Lifting everything to $\mathbb{R}^{2 n}$ and applying Proposition 4 we get that the corresponding curvature vanishes identically. Hence

$$
a_{a b}^{(2)}=0, \quad Q^{(1) p}{ }_{b c} Q^{(1)}{ }_{a p d}-Q^{(1) p}{ }_{a c} Q^{(1)}{ }_{b p d}=0 .
$$

This in turn implies

$$
r^{(2)}=0, \quad R^{(2)}=0
$$

The first relation tells us that there exist functions $k_{c d}^{\prime(2)}$ and constants $Q^{(2)}{ }_{b c d}$ such that

$$
\underline{A}_{b c d}^{(2)}-U^{(1) p}{ }_{c} Q^{(1)}{ }_{b p d}-U^{(1) p}{ }_{d} Q^{(1)}{ }_{b p c}-U^{(1) p}{ }_{c} U^{(1)}{ }_{b p d}=\partial_{b} k_{c d}^{(2)}+Q_{b c d}^{(2)} .
$$

This can be rewritten as

$$
\begin{equation*}
\underline{A}_{b c d}^{(2)}-{ }_{b c d}^{(+)} U^{(1) p}{ }_{b}\left(Q^{(1)}{ }_{p c d}+\frac{1}{2} U^{(1)}{ }_{p c d}\right)-\frac{1}{2} U^{(1) p} U^{(1)}{ }_{p b c d^{-}}=\partial_{b} k_{c d}^{(2)}+Q^{(2)}{ }_{b c d} \tag{11}
\end{equation*}
$$

with

$$
k_{c d}^{(2)}=k_{c d}^{\prime(2)}-U^{(1) p} Q^{(1)}{ }_{p c d}+\frac{1}{2} U^{(1) p}{ }_{c} U^{(1)}{ }_{p d}-\frac{1}{2} U^{(1) p} U^{(1)}{ }_{p c d} .
$$

Indeed we have

$$
U^{(1) p}{ }_{c} U^{(1)}{ }_{b p d}=\frac{1}{2} U^{(1) p}{ }_{c} U^{(1)}{ }_{b p d}+\frac{1}{2} \partial_{b}\left(U^{(1) p}{ }_{c} U^{(1)}{ }_{p d}\right)+\frac{1}{2} U^{(1) p}{ }_{d} U^{(1)}{ }_{b p c}
$$

and also

$$
\frac{1}{2} U^{(1) p}{ }_{b} U^{(1)}{ }_{c p d}=\frac{1}{2} \partial_{b}\left(U^{(1) p} U^{(1)}{ }_{c p d}\right)-\frac{1}{2} U^{(1) p} \partial_{b} U^{(1)}{ }_{c p d} .
$$

Now the left-hand side of the Eq. (11) is totally symmetric in its indices (bcd) so the same reasoning as in Lemma 10 shows that $Q^{(2)}$ is totally symmetric and there exists a function $U^{(2)}$ so that $\partial_{b} k_{c d}^{(2)}=\partial_{b c d}^{3} U^{(2)}$. Substituting, we find

$$
\underline{A}_{b c d}^{(2)}=\underset{b c d}{(\dagger)} U_{b}^{(1) p}\left(_{p c d}^{(1)}+\frac{1}{2} U_{p c d}^{(1)}\right)+\frac{1}{2} U^{(1) p} U_{p b c d}^{(1)}+\partial_{b c d}^{3} U^{(2)}+Q_{b c d}^{(2)}
$$

which ends the proof of the lemma.

5. A recurrence lemma

Lemma 12. Let ∇^{t} be a formal curve of symplectic connections on $\left(T^{2 n}, \omega\right)$ such that $\nabla^{(0)}=\nabla^{0}$, and $W^{t}=0$. Assume that, for all orders $l<k, \underline{A}^{(l)}$, and thus $r^{(l)}, u^{(l)}, b^{(l)}$ are $T^{2 n}$-invariant. Then, at order $k, r^{(k)}, u^{(k)}, b^{(k)}$ are $T^{2 n}$-invariant, and there exist a function $U^{(k)}$ on $T^{2 n}$ and a $T^{2 n}$-invariant completely symmetric 3-tensor $Q^{(k)}$ such that

$$
\underline{A}^{(k)}=\partial^{3} U^{(k)}+Q^{(k)} .
$$

Proof. Assume that, up to order $k-1$ (included), $\underline{A}_{a b c}^{(l)}, r_{a b}^{(l)}, u_{a}^{(l)}, b^{(l)}$ are $T^{2 n}$-invariant. Then, at order k, we have

$$
\begin{equation*}
R_{a b c d}^{(k)}=\partial_{a} \underline{A}_{b c d}^{(k)}-\partial_{b} \underline{A}_{a c d}^{(k)}+\sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} A_{b c}^{(s) p} \underline{A}^{\left(s^{\prime}\right)}{ }_{a p d}-A_{a c}^{(s) p} \underline{A}^{\left(s^{\prime}\right)}{ }_{b p d} ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
r_{a c}^{(k)}=-\partial_{q} A_{a c}^{(k) q}+\sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} A_{q c}^{(s) p} A_{a p}^{\left(s^{\prime}\right) q} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{c} r_{a b}^{(k)}-\sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} A_{c a}^{(s) p} r_{p b}^{\left(s^{\prime}\right)}+\Gamma_{c b}^{(s) p} r_{a p}^{\left(s^{\prime}\right)}=\frac{1}{2 n+1}\left(\omega_{c b} u_{a}^{(k)}+\omega_{c a} u_{b}^{(k)}\right) \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{b} u_{a}^{(k)}-\sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} A_{b a}^{(s) p} u_{p}^{\left(s^{\prime}\right)}=-\frac{1+2 n}{2(1+n)} \sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} r_{b c}^{(s)} r_{a}^{\left(s^{\prime}\right)^{c}}+b^{(k)} \omega_{b a} \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{a} b^{(k)}=\frac{1}{1+n} \sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} \bar{u}^{(s) c} r_{c a}^{\left(s^{\prime}\right)} \tag{v}
\end{equation*}
$$

Relation (v) implies that $\mathrm{d} b^{(k)}$ is $T^{2 n}$-invariant. Hence $\mathrm{d} b^{(k)}=0$ and $b^{(k)}$ is a constant. Antisymmetrising (iv) we get that $\mathrm{d} u^{(k)}-b^{(k)} \omega$ is a $T^{2 n}$-invariant 2-form, hence $\mathrm{d} u^{(k)}=0$ and

$$
b^{(k)} \omega_{b a}-\frac{1+2 n}{2(1+n)} \sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} r_{b c}^{(s)} r^{\prime(s) c}{ }_{a}=0
$$

Also

$$
\partial_{b} u_{a}^{(k)}=\sum_{\substack{s+s^{\prime}=k \\ s, s^{\prime}>0}} A_{b a}^{(s) p} u_{p}^{\prime(s)}
$$

Using periodicity again and the fact that the right-hand side is a constant, we see that the $u_{a}^{(k)}$ are constants. Relation (iii) tells us, for the same reason, that the $r_{a b}^{(k)}$ are constants. Finally, from (i) and the $W^{t}=0$ condition, we get that $\partial_{a} \underline{A}_{b c d}^{(k)}-\partial_{b} \underline{A}_{a c d}^{(k)}$ is a constant hence

$$
\begin{equation*}
\partial_{a} \underline{A}_{b c d}^{(k)}-\partial_{b} \underline{A}_{a c d}^{(k)}=0 \tag{1}
\end{equation*}
$$

The reasoning of Lemma 10 applies to Eq. (1) so there exist a function $U^{(k)}$ on $T^{2 n}$ and a $T^{2 n}$-invariant completely symmetric 3 tensor $Q^{(k)}$ such that

$$
\underline{A}^{(k)}=\partial^{3} U^{(k)}+Q^{(k)}
$$

We can now proceed to the proof of the main theorem.
Theorem 13. Let ∇^{t} be a formal curve of symplectic connections on $\left(T^{2 n}, \omega\right)$ with ∇^{0} the standard connection, and $W^{t}=0$. Then there exists a formal curve of symplectomorphisms ψ_{t} such that $\tilde{\nabla}^{t}:=\psi_{t} \cdot \nabla^{t}$ is a formal curve of symplectic connections which is $T^{2 n}$-invariant and has $\tilde{W}^{t}=0$, hence is flat. In particular, ∇^{t} is flat.

Proof. If $\nabla^{t}=\nabla^{0}+\sum_{k=0}^{\infty} t^{p} A^{(p)}$ is any formal curve of symplectic connections, one defines as in (3) the action of a formal curve ψ_{t} of symplectomorphisms on ∇^{t} :

$$
\left(\psi_{t} \cdot \nabla^{t}\right)_{X} Y=\psi_{t} \cdot\left(\nabla_{\psi_{t}^{-1} \cdot X}^{t} \psi_{t}^{-1} \cdot Y\right)
$$

Consider a formal 1-parameter group $\psi_{f}(t)$ of symplectomorphisms generated by a hamiltonian vector field $X_{f}\left(i\left(X_{f}\right) \omega=\mathrm{d} f\right)$ and consider the formal curve of symplectomorphisms defined by $\psi_{f}^{k}(t)=\psi_{f}\left(t^{k}\right)$. Write

$$
\psi_{f}^{k}(t) \cdot \nabla^{t}=\nabla^{0}+\sum_{p=0}^{\infty} t^{p} \tilde{A}^{(p)}
$$

then $\tilde{A}^{(p)}=A^{(p)}, \forall p<k$ and

$$
\tilde{A}_{X}^{(k)} Y=A_{X}^{(k)} Y+\left[X_{f}, \nabla_{Y}^{0} Z\right]-\nabla_{\left[X_{f}, Y\right]}^{0} Z-\nabla_{Y}^{0}\left[X_{f}, Z\right] .
$$

Observe that

$$
\left[X_{f}, \nabla_{Y}^{0} Z\right]-\nabla_{\left[X_{f}, Y\right]}^{0} Z-\nabla_{Y}^{0}\left[X_{f}, Z\right]=R^{0}\left(X_{f}, Y\right) Z+\left(\left(\nabla^{0}\right)^{2} X_{f}\right)(Y, Z)
$$

and $\omega\left(\left(\left(\nabla^{0}\right)^{2} X_{f}\right)(Y, Z), T\right)=\left(\left(\nabla^{0}\right)^{3} f\right)(Y, Z, T)$.
Assume now that the curve $\nabla_{t}=\nabla^{0}+\sum_{k=0}^{\infty} t^{p} A^{(p)}$ is a curve of symplectic connections on the torus $\left(T^{2 n}, \omega\right)$ and that ∇^{0} is the standard flat connection.

At order 1, we have seen in Lemma 10 that $\underline{A}^{(1)}=\left(\nabla^{0}\right)^{3} U^{(1)}+Q^{(1)}$ so choosing $f_{1}=-U^{(1)}$ and $\psi^{(1)}(t)=\psi_{f_{1}}(t)$ as defined above we see that

$$
\psi^{(1)}(t) \cdot \nabla^{t}=\nabla^{0}+t \bar{Q}^{(1)}+\sum_{p=2}^{\infty} t^{p} \tilde{A}^{(p)}
$$

with $\omega\left(\bar{Q}^{(1)}(X) Y, Z\right)=Q^{(1)}(X, Y, Z)$.

Assume now that one has found a formal curve $\psi^{(k-1)}(t)$ of symplectomorphisms so that

$$
\psi^{(k-1)}(t) \cdot \nabla^{t}=\nabla^{0}+\sum_{p=1}^{k-1} t^{p} \bar{Q}^{(p)}+\sum_{p=k}^{\infty} t^{p} \tilde{A}^{(p)},
$$

where the $\bar{Q}^{(p)}$ are $T^{2 n}$-invariant.
At order k, we have seen in Lemma 12 that $\underline{A}^{(k)}=\left(\nabla^{0}\right)^{3} U^{(k)}+Q^{(k)}$ where $Q^{(k)}$ is $T^{2 n}$-invariant, so choosing $f_{k}=-U^{(k)}, \psi_{f_{k}}^{k}(t)$ as defined above and $\psi^{(k)}(t)=\psi_{f_{k}}\left(t^{k}\right) \circ$ $\psi^{(k-1)}(t)$ we see that

$$
\psi^{(k)}(t) \cdot \nabla^{t}=\psi_{f_{k}}\left(t^{k}\right) \cdot \psi^{(k-1)}(t) \cdot \nabla^{t}=\nabla^{0}+\sum_{p=1}^{k} t^{p} \bar{Q}^{(p)}+\sum_{p=k+1}^{\infty} t^{p} \tilde{A}^{(p)}
$$

with $\omega\left(\bar{Q}^{(k)}(X) Y, Z\right)=Q^{(k)}(X, Y, Z)$. By induction this proves that one can build a formal curve of symplectomorphisms

$$
\psi(t)=\cdots \circ \psi_{\left(f_{k}\right)}\left(t^{k}\right) \circ \cdots \circ \psi_{f_{2}}\left(t^{2}\right) \circ \psi_{f_{1}}(t),
$$

so that $\tilde{\nabla}(t):=\psi(t) \cdot \nabla(t)$ is a formal curve of symplectic connections which is $T^{2 n}$-invariant and has $\tilde{W}(t)=0$. Lifting the connection to $\mathbb{R}^{2 n}$ and using Lemma 9 shows that $\tilde{\nabla}(t)$ has vanishing curvature. Since $\nabla(t)=(\psi(t))^{-1} \cdot \tilde{\nabla}(t)$, its curvature is 0 so $\nabla(t)$ is flat.

The above theorem implies the following:
Theorem 14. Let ∇^{t} be an analytic curve of analytic symplectic connections on $\left(T^{2 n}, \omega\right)$ such that ∇^{0} is the standard flat connection on $T^{2 n}$, and such that $W^{t}=0$. Then the curvature R^{t} of ∇^{t} vanishes.

6. Equivalence of formal curves of connections

In this section we study the question of when two formal curves of flat invariant connections on $T^{2 n}$ are equivalent by a formal curve of symplectomorphisms. First we consider the question on $\left(\mathbb{R}^{2 n}, \Omega\right)$. Here it is easy to answer.

The first case to consider is the case of a single flat invariant connection $\nabla^{A}=\nabla^{0}+A$ on $\left(\mathbb{R}^{2 n}, \Omega\right)$. We have seen that such a connection is given by a linear map $A: \mathbb{R}^{2 n} \rightarrow$ $\mathfrak{s p}(2 n, \mathbb{R})$ satisfying $A(X) A(Y)=0$ and $\Omega(A(X) Y, Z)$ completely symmetric. Define $\psi^{A}:$ $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ by

$$
\psi^{A}(x)=x-\frac{1}{2} A(x) x
$$

Proposition 15. ψ^{A} is a symplectomorphism of $\left(\mathbb{R}^{2 n}, \Omega\right)$ satisfying $\psi^{A} \cdot \nabla^{0}=\nabla^{A}$.
Proof. It is enough to check that ψ^{A} is a symplectomorphism on constant vector fields. We make extensive use of the fact that $A(X) A(Y)=0$. If X is a constant vector field then

$$
\psi_{*}^{A} X_{x}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \psi^{A}(x+t X)\right|_{t=0}=(X-A(x) X)_{\psi^{A}(x)}
$$

thus $\psi^{A} \cdot X=X-A(\cdot) X$. Hence

$$
\Omega\left(\psi^{A} \cdot X, \psi^{A} \cdot Y\right)(x)=\Omega(X-A(x) X, Y-A(x) Y)=\Omega(X, Y) .
$$

It is easy to see that ψ^{-A} is an inverse for ψ^{A} so that ψ^{A} is a symplectomorphism. Indeed, $t \mapsto \psi^{t A}$ is a 1-parameter group of symplectomorphisms with generator the symplectic vector field $\left(X_{A}\right)_{x}=-\frac{1}{2} A(x) x_{x}$.

Finally, for constant vector fields X, Y

$$
\left(\psi^{A} \cdot \nabla^{0}\right)_{X} Y=\psi^{A} \cdot\left(\nabla_{\psi^{-A} \cdot X}^{0} \psi^{-A} \cdot Y\right)=\psi^{A} \cdot((X+A(\cdot) X)(A(\cdot) Y)) .
$$

But

$$
(X+A(\cdot) X)(A(\cdot) Y)_{x}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} A(x+t(X+A(x) X)) Y\right|_{t=0}=A(X) Y
$$

so

$$
\left(\psi^{A} \cdot \nabla^{0}\right)_{X} Y=\psi^{A} \cdot(A(X) Y)=A(X) Y=\nabla_{X}^{A} Y .
$$

If $\nabla^{t}=\nabla^{0}+A^{t}$ is a formal curve of invariant flat connections on $\left(\mathbb{R}^{2 n}, \Omega\right)$ given by a curve of linear maps $A^{t}: \mathbb{R}^{2 n} \rightarrow \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ satisfying $A^{t}(X) A^{t}(Y)=0$ and $\Omega\left(A^{t}(X) Y, Z\right)$ completely symmetric, we define a formal curve of vector fields $X_{A^{t}}$ by

$$
X_{A^{t}}(f)(x)=-\frac{1}{2}\left(A_{t}(x) x\right)_{x} f
$$

and set

$$
\psi_{A^{t}}=\exp X_{A^{t}}
$$

Proposition 16. $\psi_{A^{t}}$ is a formal curve of symplectomorphisms of $\left(\mathbb{R}^{2 n}, \Omega\right)$ and $\psi_{A^{t}} \cdot \nabla^{0}=$ ∇A^{t}.

Proof. As the exponential of a derivation, $\psi_{A^{t}}$ is invertible with inverse $\exp \left(-X_{A^{t}}\right)=$ $\psi_{-A^{t}}$. Moreover, $\psi_{A^{t}} \cdot X=\exp$ ad $X_{A^{t}} X$ and it is easy to verify that ad $X_{A^{t}} X=A^{t}(\cdot) X$, $\left(\operatorname{ad} X_{A^{t}}\right)^{2} X=0$ so that $\psi_{A^{t}} \cdot X=X-A^{t}(\cdot) X$ as before. Likewise $\psi_{-A^{t}} \cdot X=X+A^{t}(\cdot) X$ so that

$$
\left(\psi_{A^{t}} \cdot \nabla^{0}\right)_{X} Y=\psi_{A^{t}} \cdot\left(\nabla_{\psi_{-A^{t}} \cdot X}^{0}\left(Y+A^{t}(\cdot) Y\right)\right)=A^{t}(X) Y .
$$

In particular the above proves.
Theorem 17. For two curves $\tilde{\nabla}^{t}$ and $\tilde{\nabla}^{\prime t}$ of invariant flat connections of Ricci-type on $\left(\mathbb{R}^{2 n}, \Omega\right)$ with $\tilde{\nabla}^{0}=\tilde{\nabla}^{\prime 0}$ the trivial connection, there always exists a formal curve of symplectomorphisms $\widetilde{\psi}_{t}$ so that $\tilde{\psi}_{t} \cdot \tilde{\nabla}^{t}=\tilde{\nabla}^{\prime t}$.

Finally, we need to know what is the general form of a formal curve of symplectomorphisms of $\left(\mathbb{R}^{2 n}, \Omega\right)$ which fixes the trivial connection ∇^{0}.

Proposition 18. Let $\psi_{t}=\sigma^{*} \circ \exp X_{t}$ be a formal curve of symplectomorphisms with $\psi_{t} \cdot \nabla^{0}=\nabla^{0}$ then $\sigma(x)=C x+d$ and $\left(X_{t}\right)_{x}=\left(C_{t}(x)+d_{t}\right)_{x}$ where $C \in S p(2 n, \mathbb{R}), d \in$ $\mathbb{R}^{2 n}, C_{t} \in t \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ and $d_{t} \in t \mathbb{R}^{2 n} \llbracket t \rrbracket$.

Proof. Evaluation at $t=0$ shows that $\sigma \cdot \nabla^{0}=\nabla^{0}$ so that $\sigma(x)=C x+d$ where $C \in$ $\operatorname{Sp}(2 n, \mathbb{R})$ and $d \in \mathbb{R}^{2 n}$. Hence $\exp X_{t} \cdot \nabla^{0}=\nabla^{0} . \nabla^{0}$ is the connection for which constant vector fields are parallel, so $\left(\exp X_{t} \cdot \nabla^{0}\right)_{X} Y=0$ for constant vector fields X, Y. Hence $\nabla_{\exp \left(-X_{t}\right) \cdot X}^{0} \exp \left(-X_{t}\right) \cdot Y=0$ and so $\nabla_{X}^{0} \exp \left(-X_{t}\right) \cdot Y=0$. But the only parallel vector fields for ∇^{0} are the constant fields, so $\exp \left(-X_{t}\right) \cdot Y$ is constant. The leading term is $-t\left[X^{(1)}, Y\right]$ and hence $\left[X^{(1)}, Y\right.$] is constant. Since $X^{(1)}$ is symplectic, this means $X_{x}^{(1)}=\left(C_{1} x+d_{1}\right)_{x}$ where $C_{1} \in \mathfrak{s p}(2 n, \mathbb{R})$. Further $\exp t X^{(1)}$ preserves ∇^{0} and $\exp (-t X(1)) \circ \exp X_{t}=\exp X^{\prime}{ }_{t}$ with $X_{t}^{\prime}=O\left(t^{2}\right)$ so we can recurse to conclude that $\left(X_{t}\right)_{x}=\left(C_{t}(x)+d_{t}\right)_{x}$ for formal curves $C_{t} \in t \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ and $d_{t} \in t \mathbb{R}^{2 n} \llbracket t \rrbracket$.

Theorem 19. Let ∇^{t} and $\nabla^{t t}$ be two curves of invariant flat connections on $T^{2 n}$ with $\nabla^{0}=$ $\nabla^{\prime 0}$ the trivial connection and suppose that there is a formal curve of symplectomorphisms ψ_{t} with $\psi_{t} \cdot \nabla^{t}=\nabla^{\prime t}$ then there is an element $C \in \operatorname{Sp}(2 n, \mathbb{Z})$ such that as a symplectomorphism of $T^{2 n}$ we have $\nabla^{t t}=C \cdot \nabla^{t}$.

Proof. We lift the connections and ψ_{t} to $\mathbb{R}^{2 n}$ and denote the lifts by a tilde. $\tilde{\psi}_{t} \cdot \tilde{\nabla}^{t}=\tilde{\nabla}^{\prime}{ }^{t}$. Then $\tilde{\nabla}^{t}=\nabla^{0}+A^{t}, \widetilde{\nabla}^{\prime}=\nabla^{0}+B^{t}$ where $A^{t}, B^{t}: \mathbb{R}^{2 n} \rightarrow \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ are linear with the usual properties. Thus

$$
\left(\tilde{\psi}_{t} \circ \psi_{A^{t}}\right) \cdot \nabla^{0}=\psi_{B^{t}} \cdot \nabla^{0}
$$

and hence

$$
\tilde{\psi}_{t} \circ \psi_{A^{t}}=\psi_{B^{t}} \circ \sigma^{*} \circ \exp X_{t},
$$

where $\sigma(x)=C x+d$ and $\left(X_{t}\right)_{x}=\left(C_{t} x+d_{t}\right)_{x}$.
Now $\psi_{B^{t}} \circ \sigma^{*}=\sigma^{*} \circ \sigma^{-1^{*}} \circ \exp X_{B^{t}} \circ \sigma^{*}=\sigma^{*} \circ \exp \sigma \cdot X_{B^{t}}$ and

$$
\left(\sigma \cdot X_{B^{t}}\right)_{x}=\left(X_{C \cdot B^{t}}\right)_{x}+\left(\left(C \cdot B^{t}\right)(x) d\right)_{x}-\frac{1}{2}\left(\left(C \cdot B^{t}\right)(d) d\right)_{x}
$$

whilst the last two terms are in the semidirect product $t \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket+t \mathbb{R}^{2 n} \llbracket t \rrbracket$ which is pronilpotent. We can exponentiate this equation in the form

$$
\exp \sigma \cdot X_{B^{t}}=\exp X_{C \cdot B^{t}} \exp Z_{t}
$$

with $Z_{t} \in t \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket+t \mathbb{R}^{2 n} \llbracket t \rrbracket$. At order zero we see that σ must be the lift of ψ^{0} and so must preserve the lattice: $C \in S p(2 n, \mathbb{Z})$. Then $\sigma^{-1} \circ \tilde{\psi}_{t}$ descends to the torus and leads off with the identity, so is of the form $\exp L_{t}$ where L_{t} is a formal series of periodic vector fields on $\mathbb{R}^{2 n}$. Thus we have, combining the terms in $\exp t \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket+t \mathbb{R}^{2 n} \llbracket t \rrbracket$ and renaming as Z_{t},

$$
\exp L_{t}=\exp X_{C \cdot B^{t}} \exp Z_{t} \exp \left(-X_{A^{t}}\right)
$$

Equating the coefficient of t on both sides we see that

$$
L^{(1)}=X_{C \cdot B^{(1)}}+Z^{(1)}-X_{A^{(1)}}
$$

and since linear and quadratic functions are never periodic we see that $C \cdot B^{(1)}=A^{(1)}$, and $L^{(1)}=Z^{(1)}$ is constant. A simple recursion (moving constant terms past $\exp X_{C \cdot B^{t}}$) suffices to see that $A^{t}=C \cdot B^{t}$.

So we have the following:
Theorem 20. The moduli space of curves of Ricci-type symplectic connections starting with the standard flat connection on $\left(T^{2 n}, \omega\right)$ under the action of formal curves of symplectomorphisms is described by the space of formal curves $A^{t}: \mathbb{R}^{2 n} \rightarrow \mathfrak{s p}(2 n, \mathbb{R}) \llbracket t \rrbracket$ satisfying $A^{t}(X) A^{t}(Y)=0$ and $A^{t}(X) Y=A^{t}(Y) X$, modulo the action of $\operatorname{Sp}(2 n, \mathbb{Z})$.

It is worth noting that a curve of Ricci-type connections on the torus is equivalent to the constant curve at the trivial connection when lifted to $\mathbb{R}^{2 n}$.

Acknowledgements

Research supported by an ARC of the Communauté Française de Belgique.

References

[1] F. Bourgeois, M. Cahen, A variational principle for symplectic connections, J. Geom. Phys. 30 (1999) 233-265.
[2] M. Cahen, S. Gutt, J. Horowitz, J.H. Rawnsley, Homogeneous symplectic manifolds with Ricci-type curvature, J. Geom. Phys. 38 (2001) 140-151.

[^0]: * Corresponding author. Tel.: +32-2-650-5841; fax: +32-2-650-5867.

 E-mail addresses: mcahen@ulb.ac.be (M. Cahen), sgutt@ulb.ac.be (S. Gutt), j.rawnsley@warwick.ac.uk (J. Rawnsley).

